
It is clear, from  (20),  that  for  this case the  multiplication 
number required is [ Q  + (Q + 1)/2] ( L  - 1)/2 instead of 
Q@ - 1). 

From  the above discussions we see that, by suitably arranging 
arithmetic  operations,  the  number of multiplications  required 
can be  reduced  by  about  25  percent.  In case that a  serial/ 
parallel multiplier (such as Am25LS14  manufactured by 
Advanced Micro Devices, Inc.) is used for  the  filter  imple- 
mentation, a 25  percent  reduction  on  the  multiplication  opera- 
tions  means a 25  percent increase on  the  filter speed  because 
almost all nonmultiplication  operations can be performed 
during  the first half multiplication cycle of the  multiplier 
while unwanted less significant bits are  being generated. 

IV. CONCLUSIONS 
In  this  paper we examine  some  problems  on  the imp1ement.a- 

tion of digital interpolator using  linear-phase FIR filters.  A 
procedure  for selecting  parameters L ,  N, and Q is  presented. 
It is shown  that,  except  for  one  interpolated sample in Case 
-4-2 where L is even and Q is odd, all ( L  - 1)  interpolated 
samples can be  computed  from  the  same  set  of Q original 
input samples. This fact can greatly  simplify the design of the 
control  section of interpolation filters. 

The  symmetry  property of the impulse  response of linear- 
phase FIR filters is exploited. It is shown  that, by suitably 
arranging arithmetic  operations,  the  number of multiplication 
operations  required can be reduced about  25  percent. If a 
serial/parallel multiplier is used for  the  filter  implementation, 
a 25  percent  reduction  on  the  multiplication  operations means 
a 25  percent increase on  the  filter  speed. 
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Transformed  Coherence Functions for Multivariate  Studies 

ALAN G .  JONES 

Abstract-In this paper,  transformed coherence function estimates are 
defied which  display  several  desirable  properties  when  compared with 
the conventional forms; 1) their  probability distribution functions are 
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more  nearly  normal, 2) their  mean  values are normalized to a  value of 
unity for totally uncorrelated  data,  and 3) their  variances are inde- 
pendent of the true  values. 

I. INTRODUCTION 
The magnitude-squared coherence  function (MSC) between 

two  jointly  stationary  random processes, x ( t )  and y ( t ) ,  is de- 
fined as 

where G x y ( f ) ,   G , , ( f )  and G y y ( f )  are  the  theoretical cross- 
and  autospectral densities,  respectively, at  frequency f. The 
MSC can be estimated  by ensemble averaging over various data 
segments, or by  band averaging over adjoining frequency  com- 
ponents by  a  suitable  spectral  window, of the sample spectra 
to yield estimate C2 of y2.  Both  the MSC and  its  estimators 
are bounded by  zero and  unity.  The necessity for  determining 
smoothed  estimators of (1) is described in  detail in [ 1 ] . 

The MSC is a  very  useful indicator of various properties of 
the linear relationship  between x ( t )  and y ( t ) ,  that is, of the co- 
herent  common  power  between  the  two measured signals. A 
nonunity value infers  either:  1) noise on x ( t )  and/or y ( t ) ,  2) 
the  system relating x ( t )  to y ( t )  is nonlinear, or 3) that  there 
are processes other  than x ( t )  and y ( t )  involved. 

However, it is relatively well known  that  the  estimators of 
(1) are biased estimators.  For  example,  for  the case of  smooth- 
ing by ensemble averaging, and  assuming there  to  be  no bias 
due to a  misalignment [2 ] ,  Nuttall  and Carter [ 3 ]  have shown 
that  the bias of C2 is given by 

B ( C 2 ) = E [ C 2 ]  - y2 - - (1 -  y 2 ) 2  1 +- 1 
N ( ;2) 

where y2 is the  theoretical MSC, C2 is the  estimated MSC, 
and N is the  number of time  data segments employed.  The es- 
timator C2 of MSC y2 does  not possess a probability distribu- 
tion  function (PDF) that  has a normal (Gaussian) form,  thus 
confidence  limits and other  statistical  descriptors  cannot  be 
easily calculated (see [4]  for graphs of the  confidence  bounds 
of the MSC at  the  80  percent  and  95  percent levels). 

11. NORMALIZED  TRANSFORMED MAGNITUDE 
COHERENCE FUNCTION (NTMCF) 

It is suggested in  [5]  that  application of R. A. Fisher’s Z -  
transformation [ 61 to  the positive square  root of the  estimate 
of the MSC, called the  magnitude  coherence (MC), yields  a 
function  that  has a  nearly normal PDF. This transformed MC 
function TMC is given by 

T(f) = arctanh (Ir(f)l). (3) 

Its  estimate T = arctanh(C),  has a variance of 
A 

2 A 1 
a? = var ( T ( f ) )  E - 

n - 2  

171 where n is the  number of degrees of freedom associated 
with  the  estimate.  For ensemble averaging with  nonoverlap- 
ping data  sets, II‘ = 2N. Empirical studies by [ 81 have con- 
firmed that  this  transformation is valid for n > 20  with 0.3 < 
y2 < 0.98. The validity of the  transformation may be ex- 
tended  to a larger range of y2 and for n > 8 if the  estimate of 
the MC is first corrected  for bias. Recent  related  work is re- 
ported  in [ 91 . 
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