M. S. PATERSON Dept. Geophysics, Australian National University, Canberra, Australia L. E. WEISS Dept. Geology and Geophysics, University of California, Berkeley, California

Experimental Deformation and Folding in Phyllite

Abstract: A phyllite has been experimentally deformed in various orientations at room temperature and high confining pressure (mainly 5 kb). It glides easily on the foliation in favorable orientations. However, when the foliation is oriented nearly parallel to the direction of compression, folds of similar form are extensively developed, especially when the specimen is constrained in a thick metal jacket. The folds have axial planes of several orientations and include kinks, conjugate folds, and more tightly appressed similar folds. The latter have axial planes approximately perpendicular to the original orientation of the foliation and are shown to evolve from the interaction of oppositely inclined kink bands. Up to about 50 per cent shortening, the deformation proceeds by growth of the kinked regions, within which little further strain occurs, rather than by progressive deformation simultaneously in all regions. All the structures developed bear close resemblance to natural structures, suggesting geometrically similar evolution in spite of different conditions of pressure, temperature, and time.

The evolution of flexural slip folding is discussed in detail for a model in which the only fundamental mechanism of deformation is glide on a unique set of parallel planes ("ideal foliated body"), assuming that the body initially yields by kinking in a regular manner. The structural evolution observed experimentally is well fitted to a first approximation by this ideal model, although departures in detail indicate that some other mechanisms of deformation are effective locally. In considering various geological implications, it is suggested that kinklike flexural slip folding may play a more important part in the evolution of natural similar folds than has been hitherto recognized.

CONTENTS

Introduction	344
General statement	344
Acknowledgments	345
Experimental details	345
Material	345
Procedure	345
Stress-strain results	346
General observations	348
Description of structures	349
General statement	349
Specimens deformed in compression	350
Specimens deformed in extension	352
Detailed description of structures	352
Distribution of deformation structures	359
Discussion	359
General statement	359
Role of constraint	359
Discussion of stress-strain results	362
Geometry of kinking in an ideal foliated body.	364
Individual kink band	364
Intersection of kink bands	365
Genesis of kinks	366
Model of flexural slip folding	368
Ideal foliated body	368
Comparison with observations	369
Conclusions and geological implications	371
References cited	373
Figure	
1. Methods of jacketing and sealing test speci-	
mens	346
2. Stress-strain curves of metals used for con-	
straining jackets	347

Ζ.	Stress-strain curves of metals used for con-	
	straining jackets	347
3.	Stress-strain curves for compression parallel to	
	foliation in thick jackets at 5 kb confining	
	pressure	347

4.	Stress-strain curves for tests in compression at	
	various angles to the foliation	348
5.	Effect of confining pressure on stress-strain	
	curves	349
6.	Histograms for frequency of angles ϕ and ϕ_k in specimens compressed parallel to folia- tion in thick metal jackets	353
	Intersecting kink bands in specimens com- pressed parallel to foliation in thick metal jackets	354
8.	Properties of intersecting kink bands	355
	Intersection of thin secondary kinks	356
10.	Chevron folds at the intersection of kinks	357
	Tightly appressed chevron folds with axial planes subperpendicular to compression	
	axis	358
	Deformation by simple gliding in ideal foliated body	360
13.	Approximation to a prescribed strain by vari- ous modes of deformation	361
14.	Kink band in ideal foliated body	364
	Progressive deformation by kinking	365
	Axial shortening of ideal foliated body achieved by intersecting kinks	366
17.	Model of progressive deformation by migra- tion of boundaries of conjugate intersecting	
18.	kinks	367
	jugate kinking in a finite body compressed parallel to the foliation	369
	Domains within the body according to their history of deformation	370
20.	Development of folding in a body departing slightly from "ideal" behavior.	371

Geological Society of America Bulletin, v. 77, p. 343-374, 20 figs., 9 pls., April 1966