GEOCHEMICAL INTERACTIONS BETWEEN CO₂, PORE-WATERS AND RESERVOIR ROCKS

Lessons learned from laboratory experiments, field studies and computer simulations

I. Czernichowski-Lauriol¹, C. Rochelle², I. Gaus¹, M. Azaroual¹, J. Pearce², and P. Durst¹

¹BRGM, French Geological Survey, 3 avenue Claude Guillemin, BP 6009, 45060 Orleans Cedex 2, France (Email: i.czernichowski@brgm.fr); ²British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, United Kingdom, NG12 5GG.

- Abstract: The degree of reactivity between CO_2 , pore-waters and minerals may have significant consequences on CO_2 storage capacity, the injection process, and long-term safety and stability. Geochemical reactions are highly site-specific and time-dependent. They need to be assessed on a site-to-site basis according to best practises by combining numerical modelling and observations from laboratory experiments, field monitoring, and natural analogues. A selection of lessons learned from three European projects about the reactivity of CO_2 with reservoir rocks and cap rocks is presented here for three sites: Sleipner (Norway) and Weyburn (Canada) where more than 1 Mt of CO_2 per year has been injected underground since 1996 and 2000 respectively, and Montmiral, a natural CO_2 field in France.
- Key words: CO₂ geological storage, geochemical studies, reactivity, reservoir, cap rock, experiments, modelling, CO₂ trapping, Sleipner, Weyburn, Montmiral.

1. INTRODUCTION

The capture and geological storage of CO_2 is increasingly seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere (IPCC, 2002; OECD/IEA, 2004). The injection of a relatively reactive substance such as CO_2 into the deep subsurface will result in chemical disequilibria and the initiation of various chemical reactions. This paper gives an overview of the potential impact of geochemical reactions, based on

157

S. Lombardi et al. (eds.),

Advances in the Geological Storage of Carbon Dioxide, 157–174.

^{© 2006} Springer. Printed in the Netherlands.