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A Stochastic Fault Model 

1. Static Case 

D. J. ANDREWS 

U.S. Geological Survey, Menlo Park, California 94025 

The number-size distribution of earthquakes requires that irregularities exist on a fault at all length 
scales. The assumption of self-similar irregularity is used to formulate a stochastic description of the 
faulting process. A random irregularity is termed self similar if it remains statistically similar upon a 
change of length scale. Self-similar geometric irregularity of a fault surface is represented in this model 
by stress and friction functions that fluctuate self similarly on a plane. If the set of rupture areas of all 
earthquakes on the brittle portion of a fault plane is assumed to be self similar, then the number of rup- 
tures with area greater than A is proportional to 1/•!. If stress drop is independent of earthquake size, 
then the number of earthquakes with moment greater than Mo is proportional to Mo -2/3. The size of an 
earthquake is determined by spatial fluctuation of the initial stress and sliding friction functions. The 
spectrum of the stress function is related to both the average stress drop as a function of earthquake size 
and the number-moment distribution. A model of the slip and stress change functions of an earthquake is 
constructed in the Fourier transform domain. While the stress function becomes smoother in an earth- 

quake at the length scale of the rupture, it becomes rougher at shorter length scales to prepare the fault 
for future smaller earthquakes. Seismicity is a cascade of stored elastic energy from longer to shorter 
wavelengths. 

INTRODUCTION 

There has been increasing interest in recent years in the role 
that heterogeneity of stress, material properties, and fault ge- 
ometry may play in fault mechanics. Heterogeneity is cer- 
tainly important to the generation of damaging high-fre- 
quency ground motion, and it may be essential in determining 
the occurrence and size of earthquakes. Such concepts and 
relevant observations have been reviewed by Aki [1979] and 
Nur [1978]. Bakun et al. [1980] find correlations of seismicity 
with discontinuities of fault geometry. Hanks [1979] has pro- 
posed that the spectrum of stress fluctuations on a fault is re- 
lated to (1) average stress drop as a function of earthquake 
size, (2) the number-size distribution of earthquakes, and (3) 
the high-frequency spectrum of dynamic ground motion. In 
this and a subsequent paper, Hanks' proposed relationships 
will be examined by applying concepts of self-similar irregu- 
larity and of fault energetics. The model proposed here differs 
from earlier stochastic models [Aki, 1967; Haskell, 1966] in 
that the random component of stress does not have a charac- 
teristic length. Some mechanical concepts that motivate the 
model will be reviewed first. 

Aki [1979] discusses rupture in terms of fracture mechanics 
concepts. A propagating rupture is stopped by an increase in 
fracture surface energy. However, in contrast to a sharp- 
tipped crack model having a stress singularity, Aki imagines 
that the fracture energy barrier consists of a significant area of 
fault surface on which slip occurs and stress increases by a 
modest amount. Such a model is conceptually the same as a 
frictional model of faulting. 

If a rupture is to stop naturally in a frictional model, it is 
necessary that the difference between initial shear stress and 
sliding friction stress vary on the length scale of the rupture, 
allowing a stress drop in the center of a slip patch to release 
energy and allowing a stress increase around the border of the 
patch to stop the rupture. A general feature of such frictional 
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models [Burridge and Halliday, 1971; Andrews, 1975] is that 
the difference between stress and sliding friction decreases 
and becomes smoother in each event. This result must be ac- 

counted for in any model of recurring earthquakes. 
Sliding friction cannot be a function of position alone. If it 

were, then after enough earthquakes had occurred to elimi- 
nate the difference between the stress and sliding friction 
functions, no more small earthquakes would occur. Further 
tectonic loading would increase stress over a broad area of the 
fault. A rupture initiated at any point would propagate over 
all of the loaded area. Somehow, the difference between stress 
and sliding friction must be maintained in a rough state. One 
might appeal to material heterogeneity to explain a single 
earthquake, but not recurring earthquakes. 

Byedee [1970] and Nur [1978] have proposed that fault in- 
stability is related to variation of sliding friction with dis- 
placement as well as with position. One might imagine a fault 
as two rough surfaces pressed together. The effective frictional 
stress will change as a function of displacement due to rough- 
ness on the scale of the displacement. 

How is roughness of a fault surface produced and how is it 
maintained? If fresh fracture occurs on some portion of a 
fault, the surface is changed there. A locked patch that is 
loaded as a seismic gap, with slip occurring all around it, will 
experience a stress state in which the principal stress axes are 
at 45 o on the average to the fault surface and to the slip direc- 
tion. If fresh fractures occur in the seismic gap, they will have 
a different orientation to the principal stress axes, forming an 
en echelon pattern. Excavation of the fracture surface pro- 
duced by a tremor in a deep gold mine revealed an.en echelon 
break [Gay and Ortlepp, 1979; $pottiswoode and McGarr, 1975; 
McGarr et al., 1979]. 

The mechanism of fracture misalignment is independent of 
length scale. Whatever the mechanisms are in general that 
maintain fault roughness, it is plausible that they have little, if 
any, length scale dependence. Patterns of faulting observed in 
the field and in laboratory models show similar irregularity 
[Tchalenko, 1970; Segall and Pollard, 1980]. 
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SELF SIMILARITY 

The concept of self-similar irregularity is familiar in the 
field of turbulent fluid flow. It means that pictures of the flow 
field at different magnifications will be statistically similar. 
Turbulent flow is self similar at length scales between an outer 
scale, determined by the driving mechanism of the overall 
flow, and an inner scale, where viscosity becomes important. 
In a self-similar flow the distribution of eddy sizes is a power 
law, and a Fourier transform of any variable is also a power 
law. 

In a different application, Madden [1976] appeals to a self- 
similar distribution of interconnecting fluid-filled cracks to ex- 
plain Archie's Law of electrical conductivity in rocks. 

In this paper the concept of self-similar irregularity will be 
applied to the faulting process. Characteristic length scales 
relevant to shallow faulting are, first, the depth of the brittle 
seismogenic region, of the order of 10 kin, and, second, the 
grain size of the medium. It is assumed that in the broad band 
between these length scales there is no other length character- 
izing fault irregularity or the seismic process. Accordingly, 
earthquakes with rupture dimension of less than 10 km are as- 
sumed to be geometrically similar on the average and are de- 
termined by fault irregularities or initial stress fluctuations 
that are self similar. 

Mandelbrot's [1977] provocative book Fractals is concerned 
with self-similar irregularity. Following his chapter 7 on the 
distribution of number of meteorite craters as a function of 

size, we will find that the number-size distribution of earth- 
quakes is determined by the self-similarity assumption alone. 

Consider only earthquakes having rupture dimension of 
less than 10 km occurring on a given planar fault surface. 
Consider the set of all earthquake rupture areas (they will 
overlap) having centroids within a region of the fault surface 
of area $. The area S is assumed to lie entirely within the 
brittle region of the fault surface. Assuming long-term unifor- 
mity of seismicity over the brittle region, the number of earth- 
quakes is proportional to $. The distribution of number as a 
function of rupture area A must be a power law, for no other 
functional form is self similar. Then the number of earth- 

quakes having rupture area greater than A and centroids 
within S is 

N-- KSA -• (1) 

where K and ¾ are constants. To have a self-similar distribu- 
tion, we require further that the relative density of ruptures be 
independent of scale. Set A -- aS. The number of earthquakes 
with rupture area greater than the fraction a of S is 

N = KS •-• a -• (2) 

If this number is to be independent of S, then ¾ -- 1, and the 
distribution becomes 

N = KS/A (3) 

The seismic moment of an earthquake is 

Mo= #(D)A (4) 

where # is shear modulus and (D } is average slip over the rup- 
ture area A. Assuming strict geometric similarity, on the aver- 
age, for earthquakes of different sizes, slip is proportional to 
rupture dimension 

(D) ocA '/2 (5) 

and stress drop, on the average, is independent of earthquake 
size. Then 

Mo oc A 3/2 (6) 

and the number of earthquakes with moment greater than Mo 
is 

N-- CMo -2/3 (7) 

In the logarithmic form, 

log N = a' - b' log Mo (8) 

written in analogy to the number-magnitude law, the slope 
predicted by strict similarity is b' = 2/3. 

The rupture patches are assumed to be distributed ran- 
domly over the brittle fault surface. With each patch is associ- 
ated a slip function, having nonzero values only at points 
within the patch, and a stress change function, having values 
decreasing with distance away from the patch. The sum of the 
stress change functions over all patches will be an irregular 
function with random fluctuations at all length scales. In the 
next section this stress sum will be assumed to reflect the ini- 

tial stress state that determined the set of earthquakes, and it 
will be of interest to characterize this random function by its 
spectru m . 

Assume that on the average each patch is circular and its 
stress change function is radially symmetric. For a patch with 
radius a, let the stress change function be 

•'(r; a) -- o(a)g(r/a) (9) 

where g is a shape function applicable for all radii and o is a 
characteristic stress drop, which will be taken to have a power 
law dependence on rupture radius, 

o(a) oc a • (1 O) 

Note that for strict similarity, • = 0. 
The two-dimensional Fourier transform of the stress change 

function has the form 

•'(k; a) = o(a)a•f(ka) (11) 

where k is the magnitude of the wave number vector k. A par- 
ticular example of such a function will be seen in the next sec- 
tion. 

Because the patches are distributed at random, the trans- 
forms have random phases, and their squares are additive. 
The square of the total stress spectrum is 

I•(k)l-- $1•(k; a)! aN (12) 

From (3) the distribution of number as a function of patch 
radius is 

N oc a -2 

dN oc a -3 da (13) 
so the total square stress transform is proportional to 

l•2(k)l o• fa2Sa4 If2(ka)l a -3 da 

• k -•-•-•- Ix •*+' If'(x)l dx 

oc k -:•-2 (14) 

Therelbre if stress changes in earthquakes reflect spatial fluc- 
tuations of the initial stress state, then stress spectral ampli- 
tudes proportional to k -•-• will produce earthquakes with 
stress drops varying as a •. 
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Mean square stress is found by integrating the square of the 
stress transform over the two-dimensional wave number 

plane. Because of assumed isotropy the contribution to stress 
variance from wave number magnitudes between k and k + 
dk is proportional to 

1•2(k)l k dk o,: k -2•-' dk (15) 

For strict similarity,/• = 0, (15) becomes dk/k, and equal loga- 
rithmic intervals of wave number contribute equally to stress 
variance. I found by numerical experiment that if the two-di- 
mensional stress function is sampled along a line, its one-di- 
mensional transform will have amplitude proportional to k -'/2 
so that again the squared spectral amplitude is proportional to 
Ilk. Discussions of this random function, with spectrum mid- 
way between white noise and Brownian motion, may be 
found in the work of Mandelbrot [1967], Mandelbrot and Wal- 
lis [1968, 1969a, b], and Gardner [1978]. 

A STOCHASTIC MODEL OF FAULT ENERGETICS 

To one, such as I, who is interested in physical mechanisms, 
the preceding discussion may be frustrating, in that it does not 
go beyond geometric description. In the remainder of this pa- 
per a more physical model of faulting is discussed. Although 
discussion of deterministic mechanisms is still avoided, the re- 

quirement that fault roughness must be regnerated will be ac- 
counted for, and the energy released in an earthquake and the 
energy balance of the overall seismic process will be examined 
in the Fourier transform domain. It will be seen that the seis- 

mic process is a cascade of stored elastic energy from longer to 
shorter wavelengths, analogous to the cascade of energy from 
larger to smaller eddies in turbulent flow. Thus Yan Kagan's 
aphorism, 'seismicity is the turbulence of solids,' takes on 
added significance. 

In turbulent flow, no energy is lost in the cascade; it is all 
dissipated by viscosity in the smallest eddies. In the case of 
seismicity, however, stored elastic energy is lost in each earth- 
quake to frictional heat and seismic radiation, so that there is 
negligible energy left for earthquakes at the bottom of the cas- 
cade at the scale of the grain size. 

Some general physical principles of faulting will be re- 
viewed before the stochastic model is presented. 

The stress function on a fault surface arises from both local 

and distant sources. One source is irregular slip on the given 
fault surface. Stress arising from this source is termed self 
stress. The remainder, termed tectonic stress, is due to slip on 
distant faults, fault creep at depth, and viscous drag at the 
base of the lithosphere. Because the source of tectonic stress is 
distant, it will vary smoothly over the fault surface. Tectonic 
stress will have significant components at wavelengths of the 
order of 10 kin, the depth of the brittle region, but not at 
shorter wavelengths. Spatial fluctuations of stress that deter- 
mine smaller earthquakes cannot arise from tectonic processes 
but must be self-stress fluctuations. An increase in the level of 

tectonic stress may trigger a small earthquake, but the size of 
the small earthquake is determined by irregularity of previous 
slip on the fault. Energy supplied to the brittle seismogenic re- 
gion by tectonic processes will appear as stored elastic energy 
at long wavelengths only. 

A complete mechanical model of an earthquake would 
have to consider the coupled response of the nonelastic fault 
zone and the elastic medium in which it is contained. The 

nonelastic response at each point is determined by the initial 

stress and material properties, the detailed variations of which 
are essentially unknowable, as well as by stress coupled 
through the elastic medium arising from slip at other points. 

The latter effect complicates interpretation of fault response 
in terms of laboratory experiments. One is not dealing with 
single numbers representing force and displacement on a 
sample. Rather, one is dealing with a function space in which 
the value of the stress function at a particular point on the 
fault surface is related to the slip function at all points of the 
surface. For instance, a localized increase of slip is associated 
with a stress drop at the center of the slip patch and stress in- 
crease around the border of the patch. Static stress change in- 
tegrated over an infinite fault surface is exactly zero. Stiffness, 
the ratio of static stress change to slip at the center of the slip 
patch, depends on the size of the patch [Walsh, 1971]. 

For a fault in an infinite elastic medium the stress function 

in the space domain is the convolution of the slip function 
with second derivatives of the point-force Green's function. In 
this paper we will be concerned with Fourier transforms of 
slip and stress over the two space dimensions on the fault sur- 
face. In the transform domain the stress function is the prod- 
uct of the slip function and a stiffness function. It is in the 
transform domain that the stiffness concept has a precise defi- 
nition. An advantage of working in the transform domain is 
that multiplication is simpler than convolution. 

Energy stored in the elastic medium is calculable from ei- 
ther the slip or the stress function via the stiffness function. 
Another advantage to considering energetics in the transform 
domain is that energy of different Fourier components of slip 
is additive, while energy of different slip patches is not addi- 
tive owing to interference. 

Different Fourier components of the slip function are not 
independent, for they are coupled by the nonlinear response 
of the fault zone. Deterministic modeling of faulting must be 
done in the space-time domain. In a deterministic continuum 
model, stress history at each point in the fault zone determines 
plastic strain at that point by some nonelastic constitutive re- 
lation. The integral of plastic strain through the thickness of 
the slip zone (another unknown and essential variable) is the 
slip function, which must be matched to the response of the 
elastic medium. If the fault zone is idealized to a surface, one 

deals with frictional stress that varies with slip. 
Stochastic modeling need not be restricted to the space-time 

domain. A stochastic process may be specified by either an 
autocorrelation function in space-time or a spectrum in the 
transform domain with prescribed amplitude and random 
phase. The two specifications are related by the Wiener- 
Khintchine theorem. Particular realizations may be readily 
constructed from the spectral representation. 

The stochastic model of this paper is formulated in the 
transform domain, and the possibility of dealing with any de- 
tailed mechanism in the fault zone is abandoned. 

The seismogenic fault surface is assumed to be purely 
brittle, with no fault creep, so that self stress is due to the cu- 
mulative slip of all past earthquakes. However, fault creep 
that has the same spectrum of roughness as the slip function 
of earthquakes may be admitted without any essential change 
in the model. 

In this model it is assumed that initial stress and sliding fric- 
tion vary randomly over the fault plane. (Variation of sliding 
friction on a plane is intended to represent the effect of ran- 
dom geometric irregularity of the fault surface.) Then it is rea- 
sonable to assume that different small elements of the fault 
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surface that slip in an earthquake will go through stress 
changes that are, to a large extent, random and uncorrelated. 
However, this cannot be entirely true, for different fault ele- 
ments must behave cooperatively on the average, in order that 
energy be released. Initiation and stopping of slip on each ele- 
ment of fault surface is influenced (but not completely deter- 
mined) by the collective stress change propagated from other 
elements. The collective effect can be expected to vary 
smoothly over the entire extent of rupture. Therefore it is as- 
sumed that the functions representing slip and stress changes 
in an earthquake consist of a smooth coherent component 
plus a random component. In the transform domain the co- 
herent component is important at wavelengths comparable to 
the extent of rupture, and the random component becomes 
dominant at shorter wavelengths. 

The model is concerned only with earthquakes having rup- 
ture dimensions smaller than the depth interval over which 
the fault is brittle. From the point of view of this model all 
such earthquakes are aftershocks. The occurrence of an earth- 
quake of a particular size implies not only that stress decreases 
as rupture nucleates and propagates but also that stress in- 
creases in the region where rupture slows and stops. Although 
friction may change in the course of an earthquake, one may 
expect that on the average a spatial fluctuation of the differ- 
ence between stress and sliding friction must be established by 
earlier earthquakes. 

In models of earthquakes that stop naturally [Burridge and 
Halliday, 1971; Andrews, 1975] the difference between stress 
and friction becomes smoother in each event. These were 

smooth models with significant variations only at the length 
scale of the rupture. It is assumed that the three-dimensional 
generalization of the Burridge and Halliday model [Dahlen, 
1974] is a reasonable representation of the coherent part of the 
stochastic model. Accordingly, it is assumed that the differ- 
ence between stress and sliding friction becomes smoother at 
the length scale of the rupture, but in order to have a model of 
recurring earthquakes, it is assumed that the difference be- 
tween stress and friction becomes rougher at smaller length 
scales. 

Although it is the difference between initial stress and slid- 
ing friction that is relevant in determining an earthquake, it is 
assumed that on the average an earthquake will tend to re- 
duce the spatial fluctuation of initial stress alone at the length 
scale of the rupture. One might imagine one limiting case in 
which initial stress is uniform and an earthquake is deter- 
mined by a spatial fluctuation of friction. In that case there is 
no correlation between the initial stress and stress change 
functions. In the other limiting case of uniform friction there 
must be a correlation (with a negative coefficient) between the 
stress change function and a local fluctuation of the initial 
stress function. It is assumed that such a correlation exists on 

the average. 

THE MODEL, STATIC CASE 

Let the fault plane be normal to the x2 axis in a Cartesian 
coordinate system. Slip D(Xl, x3) is assumed to occur in the Xl 
direction. The complementary component of stress, which en- 
ters into energy considerations, is 0•2. Let this shear stress 
component before an earthquake be denoted by •'ø(x i, x3), and 
let its change in an earthquake be •'(Xl, x3). Slip and stress 
changes (final minus initial static states) in an infinite homog- 
eneous medium are related by a convolution integral, 

/f I•I2(•'[-/'L' D, ll(Xt, + D,33(xt,l dx!dx 3 (16, 
where ;k and/z are Lain6 constants and r is distance from a 
source point to a field point on the fault plane. Subscripts fob 
lowing a comma denote differentiation. 

The two-dimensional Fourier transform over the fault 

plane of the slip function is 

D(k)-- • D(x) exp [--i(k,Xl + k3xa)] dxldX, (17) 

The transform of a function is denoted here only by its argu- 
ments. With the normalization used here, no numerical factor 
appears in the relation between an inner product in the wave 
number domain and an inner product in the space domain, 

f/f.(x)g(x)dx,dx,=/f ,'(k)g(k)dk,dk3 (18) 
In the transform domain the convolution (16) becomes a mul- 
tiplicative relation, 

•'(k) = K(k)D(k) (19) 

where the static stiffness function is 

I /z I 2(X +/z) k!• + k3• 1 (20) 
and 

k '• (kl 2 "[' k32) 1/2 (21) 

The stiffness function is derived by Andrews [1978], but with 
an error of 2rr, which is corrected here. For • =/z, stiffness is 
within 33% of being isotropic in wave number space, 

K(k) = -«/•k (22) 

We now proceed to construct a model that will be used to 
illustrate the overall energy balance in a cycle of earthquakes 
of all sizes. The model is meant to be only illustrative and is 
not to be taken rigorously in its specifics. 

Consider an ensemble of earthquakes with given rupture area, 
and plot the slip function of each with its centtold translated 
to the origin. At each point of the rupture surface, find the 
mean value of slip over the ensemble of functions. This en- 
semble mean is represented in the model by the slip function 
of a smooth coherent event that stops gradually, a three-di- 
mensional generalization of the Burridge and Halliday [ 1971] 
model, as discussed by Dahlen [1974]. This mean slip function 
in the final static state is an azimuthally symmetric version of 
the function found by Burridge and Halliday in two dimen- 
sions, 

D(x) -- Do(a)[l - (r/a)2] 3/2 r < a 
(23) 

D(x) --- 0 r > a 

where r - (x. 2 + x3•) '/• and Do is expected slip amplitude for 
rupture radius a. The function approaches zero gradually with 
a continuous first derivative at the edge of rupture, so that its 
associated stress function is finite. This function is plotted in 
Figure 1. Because the function is azimuthally symmetric, its 
transform is 

'// D(k) -- • D(x) cos k. x dx•dx3 
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fo a -- D(r)Jo(kr)r dr 

= Doa223/2I'(•)(ka) -5/2 Js/2(ka) (24) 

An integration formula from Watson [1944, p. 373] is used to 
get the third line of (24). The slip transform approaches a con- 
stant at k = 0 and asymptotically is proportional to k -3. 

Multiplication of (24) by stiffness (20) gives the stress trans- 
form, which goes to zero at k = 0 (indicating that self stress 
has zero mean in the space domain) and which is asymptoti- 
cally proportional to k -2. Inverse transformation yields the 
stress function plotted in Figure 2. It is finite, continuous, neg- 
ative at the center of the slip patch and positive in the neigh- 
borhood of r = a. For clarity of plotting, a cusp at r = a has 
been removed by applying a high-cut filter. 

In the stochastic model a random component is added to 
the expected slipsand stress functions. The spectrum of the 
random component is limited by the rupture dimension a at 
long wavelengths and by the grain size of the medium at short 
wavelengths. Within this broad band of wavelengths we as- 
sume that there is no characteristic length scale. Mathemati- 
cally, the assumption is that a change of length scale by a mul- 
tiplicative constant changes the spectrum by only a 
multiplicative constant. Then the random spectrum is a power 
law. Using the isotropic approximation for stiffness (22), the 
random slip and stress spectra are proportional to 

ID(k)l o• k -•-' (25) 

I(k)l k (26) 

From a strict point of view, both amplitude and phase are ran- 
dom functions, and the expected values of the power spectra 
are proportional to the squares of (25) and (26). Random fluc- 
tuation of amplitude is unimportant in the following analysis 
and is ignored. In order that the random component decrease 
less rapidly than the coherent component with increasing 
wave number, the exponent must satisfy the inequality 

(27) 

The following procedure was followed to construct a reali- 
zation of the stochastic model for plotting. A random slip 
spectrum was constructed on a discrete wave number grid. 
Amplitude was chosen according to (25) with v -- 1, except 
that amplitude was set to zero at k = 0. Phase was chosen ran- 

domly, but it was subject to the constraint 

D(k)-- D*(-k) (28) 

where the asterisk denotes complex conjugation, so that the 
inverse transform would be real. The inverse transformation 

was performed, yielding a function extending over all the 
fault plane. To limit the random function to the space domain 
on which the coherent slip function is nonzero, multiplication 
by a window function is required. In order that the spectrum 
not be changed at high wave numbers, the window function 
must be at least as smooth as the coherent slip function. The 
window function was chosen to be the coherent slip function 
itselL After checking that the windowed random slip function 
had a mean value near zero, it was added to the coherent slip 
function. The result for the case v = 1 is plotted in Figure 3. 
Transformation back to the wave number domain, multiplica- 
tion by stiffness, and inverse transformation yield the stress 
function plotted in Figure 4. The amplitude of the random 
component was chosen such that the short wavelength fluctu- 
ations have amplitudes comparable to the coherent stress 
drop. For clarity in plotting, a high-cut filter was applied at 
four mesh points per wavelength. 

To construct an approximate analytic model, we want to 
cut off the random spectrum (25) in an approximate and rea- 
sonable way near ka = 1. In the work to follow, we need not 
be concerned that the spectrum correspond to a wave packet 
limited in space. A simple solution is to multiply the coherent 
spectrum (24) by k '--• to get the desired asymptotic depen- 
dence (25). 

Because the stochastic model will be only a rough approxi- 
mation, we might as well approximate the coherent dis- 
placement spectrum (24). At small k it approaches 

}Doa'- (29) 

and at large k it oscillates with the root mean square value 

3(2)-'/'-Doa'(ka) -• (30) 

The principal conclusions to follow will depend only on these 
asymptotic dependencies. A simple composite function ap- 
proximating the magnitude of the coherent spectrum is 

1 2 1 
D(k) = •-Doa 1 + (ka/2.20) • (31) 

The total (coherent plus random) slip spectrum chosen for 

!. 

Fig. 1. Coherent static slip function plotted on the fault plane for unit slip amplitude, Do -- 1, and unit radius, a = 1. 
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Fig. 2. Coherent static stress change function plotted on the fault plane for #Do/a -- 1 and a -- 1. 

the stochastic model is 

I :• I + pd*(ka) 
D(k) = •-Doa I + (ka/2.2) 3 (32) 

where p is the coefficient of the random component (and is 
undetermined at this point) and • is a random function of k. 
Multiplying by the isotropic approximation to stiffness (22), 
the spectrum of static stress change in an earthquake is 

where 

I ka + pe'•(ka) 3-" 
ß (k) = - •oa • I + (ka/2.2) 3 (33) 

o(a) -- l•Do(a)/a (34) 

is a characteristic value of the coherent stress drop. It is pro- 
portional to 'the' stress drop, which is determined from obser- 
vations of moment and rupture dimensions. It is termed 'aver- 
age stress drop' here to distinguish it from the stress change 
function. The dependence of o, or equivalently of Do, on rup- 
ture radius a is not yet specified. 

The dependence of average stress drop on rupture radius is 
related to the exponent •, of the random spectrum. This rela- 
tionship follows from the assumption that the stress change 
function in an earthquake will generally be correlated (but 

with the opposite sign) with the spatial fluctuation of the ini- 
tial stress function and that the degree of this correlation on 
the average is independent of earthquake size. In other words, 
a rupture will tend to start where initial stress is relatively high 
and will tend to stop where initial stress is relatively low. This 
local fluctuation of initial stress is assumed to be, on the aver- 
age, a constant times the coherent stress change in the earth- 
quake. 

The fault will tend to be in a relatively smooth state just be- 
fore a large earthquake and will be in a relatively rough state 
just afterward. The random stress component of the large 
earthquake establishes the initial stress fluctuations that deter- 
mine stress drops of smaller earthquakes. For future small 
earthquakes the dependence of Do and o on rupture radius a 
will be found from the spectrum of stress fluctuations of a past 
large earthquake. This derivation will not appeal to a self-sim- 
ilar set of rupture areas, as was done in the preceding section. 

Given the random initial stress spectrum 

I,O(k)l o• k-' (35) 

we want to find the expected amplitude of local stress fluctua- 
tions at a length scale a. The first step is to filter the spectrum 
(35) by multiplying by the coherent stress spectrum of an 
earthquake of size a and unit stress drop, proportional to 
a•f(ka), and multiplying by a -• to correct the filter to be ap- 

1. 

Fig. 3. A realization of stochastic static slip for Do -- 1, a --- 1, and •, -- 1. 
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Fig. 4. A realization of stochastic static stress change for laDo/a -- 1, a -- 1, and v = 1. 

prophate to a fixed larger area. The filtered stress spectrum is 
proportional to 

k-•f(ka) (36) 

The mean square filtered stress is proportional to 

f [k-•f(ka)]2k dk = a-2+2" f xl-2"f2(x) dx (37) 
With the change of variable of integration, the integral on the 
fight-hand side in (37) is independent of a. The expected 
stress drop of an earthquake of size a is taken to be propor- 
tional to the square root of this mean square filtered initial 
stress 

o(a) oc a •-' (38) 

This result agrees with (14). 
If earthquake stress drops are independent of earthquake 

size, as indicated by data of Aki [1972], Thatcher and Hanks 
[1973], Kanamori and Anderson [1975], and Hanks [1977], then 

The mean square stress fluctuation depends on the band- 
width of wave numbers considered. For v -- 1 the contribution 

to mean square stress from wave number magnitudes in the 
range kmin < k < kma x is proportion to 

log (kmax/kmin) (39) 

This means that for stress drop independent of earthquake 
size, equal logarithmic intervals of wave number contribute 
equally to stress fluctuation. 

In the limit as the bandwidth is extended toward infinite 

wave number, stress will not converge to a regular function if 
v _< 1. Stress defined by such a spectrum will be a generalized 
function, however, and the average value of stress over any fi- 
nite area will exist. As the size of a test area shrinks toward 

zero, average stress on the test area will not converge, but will 
exhibit fluctuations increasing without limit, until the grain 

size is reached. This result is not unphysical, for individual sil- 
icate grains may support shear stress of several kilobars, while 
average stress drop in earthquakes is of the order of 100 bars. 

An example of a random stress function, having a spectrum 
with v = 1 and a broad bandwidth, sampled along a line on 
the fault plane, is shown in Figure 5. One can see that fluctua- 
tions at different length scales have about the same amplitude 
on the average. Filtered versions of this same stress function 
in three different bands having equal logarithmic bandwidths 
are shown in Figure 6. Here fluctuations at different length 
scales are clearly separated. The three plots have approxi- 
mately equal mean square values. (Lack of exact equality 
arises from discreteness of the numerical spectrum and sam- 
pling along a line.) 

The elastic strain energy stored in the medium around the 
fault may be divided into two parts, tectonic energy and the 
fault's self energy, which arises from irregularity of past slip 
[Andrews, 1978]. Self energy is independent of tectonic stress. 

PASSBAND I< I/x <64 

0 DISTANCE 

Fig. 5. A random stress function with spectrum proportional to 1 
k on a plane sampled on a line of unit length. The spectrum is filtered 
with a passband I < k/2,r < 64. 
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PASS BAND I < •/x < 4 

PASSBAND 4< •/x < 16 

PASSBAND 16 < •/x < 64 

I 

o DISTANCE • 

Fig. 6. The same function as in Figure 5 filtered with three differ- 
ent passbands: (top) 1 < k/2•r < 4, (center) 4 < k/2•r • 16, (bottom) 
16 • k/2•r • 64. 

The fault's self energy is to be distinguished from the self en- 
ergy of a single slip event. The fault's self energy is considered 
here as a measure of the irregularity of stress on the fault sur- 
face, and its spectral decomposition must be stationary over a 
cycle of earthquakes of all sizes. In order that the subsequent 
energy analysis exclude tectonic energy, r ø is to represent ini- 
tial self stress only, and its mean value over the entire fault 
surface is zero. 

Let us now consider the change of static self energy stored 
in the elastic medium owing to the occurrence of an earth- 
quake. This energy change is equal to the work done by trac- 
tions on the fault plane in a quasi-static process going from 
the initial to the final state, 

E---f/[?ø(x)+«?(x)]D(x)dx,dx3 
The integral may be written in the transform domain 

E=-/f [rø(k)+«r(k)]D*(k)dk•dk3 

(40) 

(41) 

The integrand is identified as the spectral density of static en- 
ergy e(k). 

Consideration is now restricted to the portion of the fault 
surface that is to slip in an earthquake, taken to be a circle of 
radius a. On this restricted area the initial stress does not have 

the spectrum (35), appropriate to a larger area, for we have 
purposely chosen an area containing a stress peak surrounded 
by a stress trough. Assume that the mean value of self stress 
over this area, averaged over all earthquakes, is zero. (This 
may be the worst assumption of the model and could be a 
point of departure for further work.) Then the initial stress 
spectrum is taken to be the negative of (33) multiplied by a 
coefficient f, but with an uncorrelated random part, 

rø(k) = f l--•-oa: ka + Pe•'(ka)3-" (42) I + (ka/2.2) 3 

where q• is a random function of k, independent of •. 
In numerical models with uniform friction [Andrews, 1975] 

it was found that stress drop never exceeded the initial stress 
fluctuation, implying I _< f < oo. In another class of models 
one might imagine a uniform initial stress with the earthquake 
being determined by nonuniform friction. In that case, f -- 0. 
The average value of f for all cases is highly uncertain, but if 
stress and friction vary independently, then a value of the or- 
der of 1 is not unreasonable. Initial and final stress states are 

illustrated in Figure 7 for a case in which f -- 2/3. 
Substitute the spectra (42), (32), and (33) into the energy in- 

tegral (41), and perform an ensemble average. A term con- 
taining a single' random function or product of independent 
random functions will average to zero, but the square of a 
random function will remain. The result for the integrand of 
(41) is 

I O•a5 [(-f + «)ka + «p2(ka)5-2•] (43) e(k) = •-•-•- [1 + (ka/2.2)3] • 

-2.0 -1.0 0.0 1.0 

x 

2 •. 0 

Fig. 7. Initial stress (solid curve), final stress (dashed curve), and 
slip function illustrated for a case in which static energy, ignoring in- 
teraction with tectonic stress, decreases in an earthquake. The initial 
stress function must be more concave downward than the final stress 
function is concave upward at the length scale of the rupture, as in 
this example, in order that stored elastic energy decreases at wave- 
lengths comparable to the rupture dimension. Stored energy increases 
at shorter wavelengths. 
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and the integral over wave number is 

E = 2•r e(k)k dk (44) 

The integral converges at large k, meaning that processes at 
the scale of the grain size are unimportant to the energetics, if 
v> 1/2. 

The integral may be evaluated by using a formula from 
Gradshteyn and Ryzhik [1965, p. 293], 

I 1 21_p2(2.2)4_2, ß n'O•a• (2•2) 3 _f + + 

ß (4-2v)•r/3 ] sin (4- 2v)•r/3 (45) 
The three terms of (45) are, first, the interaction energy with 
the initial state, second, the self energy of the coherent com- 
ponent of the earthquake, and, third, the self energy of the 
random component. The self-energy terms are always posi- 
tive, and it may be seen by comparing terms in the numerator 
of (43) that the random self energy is distributed at higher 
wave numbers. If f > 1/2, then the coherent terms produce a 
static energy decrease at wavelengths comparable to the rup- 
ture dimension. The ratio of random energy increase to coher- 
ent energy decrease is 

R = «P2(2'2)n-•' (4- 2v)•r/3 (46) 
f - « sin (4 - 2v)•r/3 

If stored elastic energy is to decrease in an earthquake, this ra- 
tio must lie in the range 0 < R < 1. For the example plotted in 
Figures 3 and 4 the ratio of random self energy to coherent 
self energy is 0.11. Assuming f -- 1, then R = 0.11 in the ex- 
ample. 

The spectral distribution of energy change ke(k) is plotted 
ß m Figure 8 for v = 1 and two different values of R. Note that 
spectral energy decreases for ka of the order of I and increases 
for large ka. We see that each earthquake contributes to a cas- 
cade of stored elastic energy from longer to shorter wave- 
lengths. 

The onergy spectral density must be statistically stationary 
over a cycle of earthquakes of all sizes. We will see that this 
requirement relates the number-moment distribution of earth- 
quakes to the amplitude and slope of the random spectrum. 

The moment of an earthquake of size a is proportional to 

Mo(a) oc o(a)a 3 (47) 

0 
5 

I /l = 0.5 

Fig. 8. The spectral distribution of static energy change, ke(k), 
plotted for two different ratios of incoherent energy, R. 

and substituting the size dependence of stress drop from (38), 

Mo(a) oc a •+• (48) 

The distribution of number of earthquakes with moment 
greater than Mo is taken to be 

log N = a' - b' log Mo (49) 

where primes on the coefficients are to emphasize that this is 
not the more familiar number-magnitude distribution. This 
number-moment distribution has been discussed by Wyss 
[1973]. The differential distribution is 

dN oc Mo-•"-ldMo (50) 

The integral for cumulative moment 

/ Mo dN oc / Mo-b' dMo (51) 
converges at small earthquake size if b' < 1. 

Substituting (48) into (50), one finds the differential distri- 
bution of rupture radii, 

dN oc a -'•'-•'-• da (52) 

Substituting the size dependence of stress drop (38) into 
(43), the spectral distribution of static energy change in an 
earthquake of size a is proportional to 

e(k, a) oc a 2'+3 (-f + «)ka + «p2(ka)•-2' 
[1 + (ka/2.2)3] 2 

(53) 

The spectral energy change in a cycle of earthquakes of all 
sizes is 

fo amax E(k) = e(k, a) dN oc e(k, a)a -•o'-2b'-' da (54) 

where the number-size distribution (52) is assumed to extend 
to a = 0 but is truncated at a maximum size. Substituting (53) 
into (54) and changing the variable of integration, 

E(k) oc k "t"+2t"-e'-3 

fO kamax ß (-f + «)x + [1 + (x/2.2)3]: dx (55) 

Stationarity of the energy distribution over a cycle of earth- 
quakes of all sizes requires that this integral be zero. For 
wavelengths much shorter than amax the upper limit may be 
set to infinity. The integral converges for 

-vb'-2b' + 1 <-1 (56) 

or, forv-- 1, 

b'> 2/3 (57) 

For smaller values of b' there are not enough small earth- 
quakes to remove the roughness established by larger earth- 
quakes. 

Evaluating the integral (55) for kam•x -- oo and substituting 
the expression (46) for ratio of random to coherent energy, the 
stationarity requirement is 

•4•r/3 sin B•r/3 C•r/3 
= (58) sin/t•r/3 B•r/3 sin C•r/3 
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where 

A = -t,b'- 2b' + 2t, + 1 

B =-•,b'-2b' + 5 (59) 

C-'4-2t, 

The ratio R is plotted on the allowed portion of the •,, b' plane 
in Figure 9. For •, = l, R increases nearly linearly from 0 at 
b' = 2/3 to I at b' -- 1. A small value of R, as suggested by the 
plotted example (assuming f - l), predicts a b' value slightly 
larger than 2/3. 

DISCUSSION 

The spectrum of the stress function on a fault surface has 
been related to average stress drop as a function of earthquake 
size and to the number-size distribution of earthquakes by two 
different analyses in this paper. The first analysis was a 
straightforward application of concepts of self-similar irregu- 
larity from Mandelbrot [1977]. The second analysis, while still 
avoiding any discussion of deterministic mechanisms, at- 
tempted to construct a physical picture of an earthquake con- 
sistent with the stress state produced by all earthquakes and 
examined the spectral decomposition of the self energy of the 
fault. The assumption of self similarity was implicit in the sec- 
ond analysis. 

The two analyses agree on the stress spectrum that is consis- 
tent with stress drop being independent of earthquake size. 
They disagree on the number-size distribution that arises from 
that spectrum. For strict self similarity the first analysis pre- 
dicts the slope of the number-moment distribution to be b' -- 
2/3, while the second analysis allows the range 2/3 < b' < l, 
the lower end of the range being favored. The discrepancy 
will surely be a stimulus for further work. The second ap- 
proach suggests greater physical insight into the seismic proc- 
ess, but because it is more complicated, its predictions are less 
convincing. 

Let us now relate b' to the b value of the number-magnitude 
distribution. For the purpose of illustration, assume that mo- 
ment and magnitude are related as 

log Mo = cM 4- d (60) 

(A single relation of this type cannot hold for earthquakes 
having corner frequencies both above and below the resonant 
frequency of the instrument for which a particular magnitude 
scale is defined.) Then the number-moment distribution (49) 
becomes the number-magnitude distribution 

logN=a-bM (61) 

where 

b = cb' (62) 

05 
0 5 1.0 1.5 2.0 

z/ 

Fig. 9. Incoherent energy ratio, R, required by stationarity plotted 
on the •,, b' plane. Allowed values lie in the intersection of the regions 
0<R< I andb'< 1. 

Synthesizing different magnitude scales, Hanks and Kanamori 
[1979] find c = 1.5. Then the second model of this paper with 
•, = 1 predicts that b values lie in the range 

l<b< 1.5 (63) 

At magnitudes less than 3, Bakun and Lindh [1977] find 
c = 1.2. Then this model predicts 

0.8 < b < 1.2 (64) 

For microearthquakes on the San Andreas Fault, b values 
lie roughly in the range 0.8-1.2 with smaller values on locked 
portions and larger values on creeping portions [Pfiuke and 
Steppe, 1973; Grosenbaugh and Lindh, 1978]. Wyss [1973] cites 
data supporting higher b values in regions where creep may 
be expected, such as midocean rifts and the Gulf of Califor- 
nia, and lower b values in fracture zones and Baja California. 

Perhaps b' • 1 on creeping faults, so that the cumulative 
moment is dominated by very small earthquakes. The value b' 
= 2/3, predicted by strict self similarity, may be appropriate 
to locked faults. Grosenbaugh and Lindh [1978] also find that 
hypocenters are distributed rather uniformly where the San 
Andreas Fault is creeping, but hypocenters are clustered 
where the fault is locked and b values are lower. Perhaps self- 
similar clustering, another fractal phenomenon discussed in 
chapters 4, 5, and 6 of Mandelbrot [1977], is applicable to 
earthquakes on locked faults. 

If average stress drops are independent of earthquake size 
0' = 1), the slip spectrum goes as k -2. This is the same spec- 
trum of roughness as proposed by Karnb [1970] for the topog- 
raphy of a glacier bed. If two surfaces with the spectral rough- 
ness of a glacier bed are pressed together elastically and 
sheared with frictional sliding, the spectra of fluctuations of 
both normal stress and shear stress will go as k-:, in agree- 
ment with this model with •, = 1. 

The model has some limitations. The distribution of aver- 

age stress drops at fixed earthquake size is not considered. 
Fracture of asperities on the fault surface will produce local 
stress drops of kilobars. Perhaps average stress drops, ob- 
served to lie in the range of 10-100 bars, are determined by a 
stochastic process in which fracture occurs on a small fraction 
of the sliding surface, and the expected value of this fraction is 
the same for any size earthquake. 

The predictions of the model are testable. However, a rigor- 
ous comparison with data would be a formidable undertaking. 
Broadband high-dynamic-range recordings would be required 
to determine moment and stress drop for an unbiased sample 
of earthquakes over several orders of magnitude of moment 
and over a time interval greater than the recurrence time of 
magnitude 6 earthquakes. 

In regard to earthquake prediction, the model is pessimistic 
about the relevance of a point measurement of stress. The 
model is concerned with statistical averages over a time inter- 
val much longer than the recurrence time of large earth- 
quakes, in order to obtain stationarity. Over shorter time in- 
tervals the seismic process need not be stationary. It is possible 
that stress drops, b' values, and high-frequency ground mo- 
tion spectra are different before and after a large earthquake. 
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