
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. B4, PAGES 6291-6302, APRIL 10, 1991 

High-Frequency Spectral Falloff of Earthquakes, Fractal Dimension 
of Complex Rupture, b Value, and the Scaling of Strength on Faults 
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The high-frequency falloff w -y of earthquake displacement spectra and the b value of aftershock 
sequences are attributed to the character of spatially varying strength along fault zones. I assume that 
the high frequency energy of a main shock is produced by a self-similar distribution of subevents, 
where the number of subevents with radii greater than R is proportional to R-D, D being the fractal 
dimension. In this model, an earthquake is composed of a hierarchical set of smaller earthquakes. The 
static stress drop is parameterized to be proportional to R 7 and strength is assumed to be proportional 
to static stress drop. I find that a distribution of subevents with D - 2 and stress drop independent of 
seismic moment (r/= 0) produces a main shock with an w -2 falloff, if the subevent areas fill the rupture 
area of the main shock. By equating subevents to "islands" of high stress of a random, self-similar 
stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - r/. Thus D 
= 2 corresponds to constant stress drop scaling (r/ = 0) and scale-invariant fault strength. A 
self-similar model of aftershock rupture zones on a fault is used to determine the relationship between 
the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. The 
b value for aftershock sequences on a fault is found to equal (3 - 1.5r/)/(3 + r/). Therefore this model 
indicates that the typically observed spectral falloffs of w -2 and b values of 1 can be entirely caused 
by scale-invariant strength (r/- 0) along fault zones. 

INTRODUCTION 

Variations in rock type, bends, steps, splays, and many 
other complications along fault zones cause their effective 
shear strength to vary spatially. This paper considers two 
manifestations of heterogeneous fault strength related to 
earthquake occurrence. The first is the generation of high- 
frequency seismic energy by earthquakes, which can be 
quantified by the high-frequency falloff of their displacement 
spectra. It has long been recognized that the high-frequency 
radiation from earthquakes could be produced by complica- 
tions on the fault plane at scales smaller than the overall 
rupture dimension [e.g., Housner, 1955; Haskell, 1964]. As 
discussed below, this high-frequency energy can be viewed 
as a result of rupture of subevents on small patches of 
relatively high stress on a fault plane. Understanding the 
character of the high-frequency radiation of earthquakes is 
important to several major efforts in seismology and engi- 
neering. High-frequency strong ground motion (> 1 Hz) is a 
major cause of damage to many types of buildings. Many 
schemes developed to discriminate underground nuclear 
explosions from earthquakes rely on their relative excitation 
of high-frequency seismic energy. 

The second manifestation of fault zone heterogeneity 
addressed here is the frequency of occurrence of aftershocks 
as a function of their magnitude, which is parameterized by 
the b value [Richter, 1958]. Aftershock rupture zones can 
also be viewed as areas of relatively high stress on a fault, 
similar in some respects to subevents that occur during 
individual earthquakes. The b value is important for estimat- 
ing the expected recurrence of earthquakes over a region. 
Thus, understanding the underlying cause of the b value also 
ties in with seismic hazard assessment. 

Displacement spectra of earthquakes typically exhibit a 
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high-frequency falloff above the corner frequency that is 
proportional to w -2 where to is the angular frequency [e.g. 
Housner, 1947; Aki, 1967; Hanks, 1981; Chael, 1987]. This 
corresponds to an acceleration spectrum that is flat for 
frequencies above the corner frequency. Many models of the 
earthquake source have been developed to try to explain this 
high-frequency spectral character. Brune [1970] proposed a 
source model with an instantaneous stress pulse that he 

-2 
found to produce a displacement spectrum with an to 
falloff. However, later studies using dynamic models dem- 
onstrated that rupture nucleation generates high-frequency 
energy that is proportional to w -3 [e.g., Madariaga, 1976] 
and that smooth rupture propagation generates relatively 
little high-frequency energy [Madariaga, 1977]. Thus models 
with smooth ruptures cannot produce the requisite amounts 
of high-frequency observed in actual seismograms (T. H. 
Heaton, unpublished manuscript, 1990). For simple ruptures 
on fault planes with uniform strength and stress, it is 
necessary to have abrupt stopping behavior simultaneously 
over the perimeter of the fault to generate w -2 falloffs 
[Madariaga, 1976]. 

Hanks [1979] and Andrews [1981] proposed that the w -2 
spectral falloff was a manifestation of complexity in the 
rupture process caused by heterogeneous stress relief along 
the fault plane. That point of view is taken in this paper. 
Hanks [1979] suggested that the high-frequency spectral 
falloff could be related to the scaling of seismic stress drop 
with moment and the b value of earthquake sequences. He 
found that a stress drop independent of moment produced a 
high-frequency decay of w -2. To make this conclusion, 
Hanks [1979] assumed that the high-frequency spectral am- 
plitude of an earthquake at any given frequency was con- 
trolled by stress variations on the fault with a scale length 
inversely proportional to that frequency. Andrews [1981] 
quantified the relation between the high-frequency rolloff 
and the fractal dimension of the stress drop along the fault, 
based on an analysis of the spatial Fourier transforms of the 
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slip velocity and stress. He assumed that the slip velocity 
had the same power law dependency in time as in space. 

One purpose of this paper is to show that the exponent (•/) 
of the high-frequency spectral falloff (w -v) can indeed be 
determined by the scaling of strength with distance along the 
fault plane, as suggested by Hanks [1979] and Andrews 
[1981]. I develop a self-similar model of complex rupture 
where an earthquake is composed of subevents with dif- 
ferent sizes. These subevents are themselves composed of 
subevents, and so on. In this model, an earthquake is made 
up of a hierarchical set of smaller earthquakes. I show how 
such a model can link the high-frequency spectral falloff of 
earthquakes with the scaling of strength along faults. In this 
analysis, I assume that the stress drop of earthquakes or 
subevents on a fault is proportional to fault strength, which 
varies with position along a fault. 

I first show that the high-frequency spectral falloff of the 
main shock can be determined by the size distribution of the 
subevents which compose that earthquake. This size distri- 
bution of subevents defines the fractal dimension D [Man- 
delbrot, 1977]. By considering stress a self-similar random 
function of position along the fault, I then demonstrate that 
the fractal dimension of subevents is controlled by the 
scaling of strength or stress drop on the fault. From this 
analysis, I find that a scale-invariant fault strength produces 
a rupture with a fractal dimension of two and an 0 -2 spectral 
falloff, if the subevent areas fill the main shock rupture area. 
Hanks [1979] and Andrews [1981] also found that constant 
stress drop scaling led to an w -2 falloff, using different 
methodologies. 

The fractal distribution of subevent sizes in this model of 

complex rupture is consistent with observations of fault 
properties. Observations of surface faulting for large earth- 
quakes indicate that fault zone complications occur on a 
variety of scales [e.g., Tchalenko and Ambraseys, 1970], 
with shear zone features at small scale lengths (centimeters) 
looking like miniature versions of large-scale features (kilo- 
meters). Measurements of the fractal dimension of the 
surface trace of the San Andreas fault by Okubo and Aki 
[1987] and Aviles et al. [1987] have attempted to quantify its 
bends and subsidiary faulting for a wide range of length 
scales. Random topography on the contact surfaces of a fault 
can also be described by fractals [Brown and $cholz, 1985]. 
All of these complications can produce a self-similar varia- 
tion in effective strength and stress on the fault plane. Scholz 
and Aviles [1986] discussed the implications of the fractal 
geometry of faulting to the generation of high-frequency 
seismic radiation. Some work has been done incorporating 
failure at different length scales into models of earthquake 
sources [e.g., Blandford, 1975] and simulations of complex 
rupture [Boatwright and Quin, 1986]. Smalley et al. [1985] 
used a renormalization group method to study how earth- 
quake rupture can expand from the successive failure of 
nested asperities with different sizes. 

Another goal of this paper is to demonstrate that b values 
of aftershock sequences on a fault can also be a function of 
the scaling of strength on faults. It is generally observed that 
b values of aftershock sequences are, on average, equal to 1 
[see Utsu, 1971]. Many studies have shown that a b value of 
1 can be an expression of the size distribution of earthquake 
rupture zones on a fault. These studies find that a b value of 
1 will result if the number of rupture zones with a given area 
is inversely proportional to that area [Kanamori and Ander- 
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Fig. 1. (a) A simplified example of a rupture model with a 
continuous, self-similar distribution of subevent rupture areas. 
Rupture zones of subevents are shown by different sizes of circles. 
The outermost circle represents the rupture area of the main shock. 
The rupture zones shown in Figure 1 a are the level 1 subevents. (b) 
A blow-up of one of the subevents in Figure l a, showing that it 
contains its own self-similar distribution of subevents (level 2). 

son, 1975; Hanks, 1977; Andrews, 1980; Aki, 1981; Turcotte, 
1989; Rundle, 1989]. In this paper, I show that such a size 
distribution of rupture areas can arise from a scale-invariant 
fault strength. 

The central result of this paper is that the high-frequency 
spectral falloff of earthquakes, the size distribution of sub- 
event and aftershock rupture areas, and the b value of 
aftershock sequences can all be determined from the scaling 
of strength on fault zones. 

MODEL FOR COMPLEX RUPTURE 

In this paper, I use a model of complex rupture where an 
earthquake is composed of a set of subevents of various 
rupture sizes, each of which is itself a complex earthquake. 
Figure 1 is a simplified picture of such a rupture model. 
Figure l a shows the subevents within the main shock that 
are not contained in any other subevents, designated here as 
level 1 subevents. The size distribution of these level 1 

subevent areas is self-similar. That is, taking a small part of 
the main shock area and enlarging it by some factor will 
produce a distribution of subevent areas that is statistically 
identical to the original. I assume that the radiation of these 
subevents generates the high-frequency radiation of the main 
shock. The rupture areas of subevents on any particular 
level do not overlap. 

Within each of the level 1 subevent areas shown in Figure 
1 a there is a self-similar distribution of subevents (see Figure 
1 b), denoted here as level 2 subevents. In turn, each one of 
these level 2 subevents has its own subevents (level 3), and 
so on. So each level 1 subevent is composed of a hierarchy 
of smaller subevents within it. The sizes of the subevents 

correspond to different scales of stress/strength variations on 
the fault plane. Larger-scale fluctuations of stress will have 
smaller-scale variations within them. As described in more 

detail below, the spaces in between the subevents at any 
given level do not have zero stress. I show in a later section 
that this nested, self-similar distribution of subevents can be 
understood as the expression of strength being a random 
self-similar function of position on the fault plane. 

The size distribution of the subevents can be quantified by 
its fractal dimension [Mandelbrot, 1977]. For the model 
shown in Figure 1, the distribution of level 1 subevents is 
specified by 
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Fig. 2. (a) Displacement spectra for a main shock and one of its subevents. For this example, the stress drops of 
the main shock and subevent are equal and the high-frequency spectral falloff is 0 -2. The f0main and f0sub are corner 
frequencies of main shock and subevent. Low-frequency spectral levels are proportional to seismic moments M0mai n 
and M0sub. Axes for spectral amplitude and frequency are in arbitrary units. (b) Energy spectra for main shock and 
subevent. 

- , (1) d(ln Rsub) - p Rmain 
where D is the fractal dimension, N is the number of level 1 
subevents, R sub is subevent radius, R main is the radius of the 
main shock rupture zone, and p is a constant of proportion- 
airy. The subevents have a continuous size distribution. The 
dN/d(ln Rsub) describes the probability distribution of subev- 
ents over a logarithmic interval of radius. From (1), the number 
N(R) of level 1 subevents with radii greater than R is 

fR max N(R) • Rs-• ) d(ln Rsub). 

R ma x is the maximum subevent size for the distribution. 
Since d(ln Rsub) = Rs-• dRsub, this equation becomes 

fR max N(R) •z Rs-•-1 rimsub. 
dR 

After integration, the number of level 1 subevents with radii 
larger than R is found to be 

N(R) oc R -D + C, (2) 

where C is a constant. 

Because the model in Figure 1 is self-similar, the distribu- 
tion in (1) and (2) also describes the number of level 2 
subevents in a level 1 subevent with size R 1. In (1) we would 
substitute R1 for R main. The same size-distribution would 
apply for subevents within other subevents at all levels. 

I assume that there is a minimum size R mi n for the 
complex subevents. R mi n is not the minimum source radius. 
Complex subevents with R min would be composed of smaller 
subevents with simple ruptures. R mi n is not meant to corre- 
spond to the critical crack length generally found in dynamic 
models of faulting [e.g., Dieterich, 1986]. The serf-similarity 
of the rupture model is valid for length scales greater than or 
equal to R min' 

The analysis in this paper is based on other assumptions, 
such as the corner frequency of a subevent is inversely 
proportional to its source radius. This means that the dom- 
inant period of the radiated energy is proportional to the 
source radius. I assume that the spectral amplitude above 
the corner frequency decays as a power of frequency. The 
spectra of the subevents have the same high-frequency 
rolloff regardless of source size. Because of the self- 
similarity of the rupture model, the subevents have the same 
high-frequency falloff as the main shock. The shape of the 
displacement spectrum f•(f) of the main shock or any 
subevent is given by 

M0 
D,(f) •z (3) 

1 + (f/fo) •' ' 

where M0 is the seismic moment of the subevent, f0 denotes 
its corner frequency, and f is frequency. Figure 2a shows 
displacement spectra for a main shock and one of its 
subevents. For simplicity, I also assume that the rupture 
zones are circular. The spectrum of the radiated energy is 
proportional to the square of the velocity spectral amplitude, 
so 

E(f) • f2f12(f). (4) 

Figure 2b depicts the energy spectra for the main shock and 
one of its subevents, corresponding to the displacement 
spectra in Figure 2a. At high frequencies (f >> f0), the 
energy becomes 

E(f) oc f2- 2•r2•,•2 •0 •'-0. (5) 
The seismic moment can be related to the source radius 

and the dependence of stress drop on source radius. The 
seismic moment is given by 

M o = IxAu • IxAAcrR (6) 

Here/x is shear modulus, A is fault area, u is slip, Atris static 
stress drop, and R is fault radius. The static stress drop is 
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Fig. 3. Schematic plots showing (a) slip and (b) stress on the 

fault as a function of distance. (a) Dashed line is the slip for main 
shock that contains two level 1 subevents. Solid line is the slip for 
the two subevents. The slip shown with the dashed line accumulates 
over a longer time scale than the slip indicated by the solid line. (b) 
Solid line is initial stress for subevents. Dashed line is long- 
wavelength component of stress released during the main shock. 
For the case shown, stress drop is independent of scale length. 

proportional to u/R. I let the static stress drop be dependent 
on source radius such that 

Act cr R '•. (7) 

I assume that the fault strength is proportional to the stress 
drop, so that the scaling of stress drop with source radius is 
identical to the scaling of fault strength with distance on the 
fault. Substitution into (6) produces 

M 0 cr R 3 + •. (8) 
I assume that the high-frequency energy of the main shock 

is produced by the subevents. By "high frequency," I am 
referring to frequencies above the corner frequency of the 
largest subevent within the main shock. This type of assump- 
tion was also made in the works of Papageorgiou and Aki 
[1983], Joynet and Boore [1986], and Boatwright [1988], all 
of whom investigated the high-frequency energy of an earth- 
quake composed of multiple subevents of equal radii. In the 
model presented here, the subevents have a self-similar 
distribution of sizes. Furthermore, I assume that the high- 
frequency energy of each subevent is produced by the 
subevents within it. 

The following paragraphs present a qualitative description 
of how rupture could proceed through a hierarchy of stress/ 
strength variations with different length scales. The results 
of this paper are not dependent on the sequence or timing of 
the subevents given here. Figure 3 shows simplified dia- 
grams of how slip and stress could change during the rupture 
process. Here we consider two different level 1 subevents 
within a main shock. In this simplified case, I chose two 
equally-sized subevents. In the general model (Figure 1), 
there is a distribution of subevent sizes within the subevent. 

For this example the static stress drop is taken to be the 

same for the main shock and the subevents. Therefore the 

maximum slip is proportional to radius. Figure 3 could also 
represent level i + 1 subevents within a level i subevent. 

Let rupture nucleate at some point in the main shock 
rupture zone. The rupture front will expand and encounter 
the heterogeneous strength along the fault zone. Consider 
what will happen as rupture propagates into a subevent 
(Figure 3). Both long wavelength and short wavelength 
stresses will be relieved as the rupture propagates into the 
subevent. As it proceeds across the subevent, the rupture 
front will encounter the small-scale stress variations that will 

form the subevents and their own subevents. The short- 

wavelength slip for the subevents is shown in Figure 3a as 
the solid line. As these subevents (and their subevents) are 
being activated, the longer wavelength slip of the main shock 
is accumulating (dashed line in Figure 3a). The long wave- 
length slip of the main shock will take longer to build to its 
final level than the slip of each of the subevents. This time 
will correspond to the time it takes the rupture front to 
traverse the rupture zone of the main shock and will be 
proportional to the rupture dimension of the main shock and 
inversely proportional to its corner frequency. The total slip 
for the main shock (dashed curve in Figure 3a) will be 
relatively large at the positions of the subevents. The short- 
er-wavelength slip for the subevents will be superimposed on 
the longer-wavelength slip. 

When each subevent fails, the stress over its rupture area 
changes from the solid line in Figure 3b to the level of the 
dashed line. This represents a relatively short wavelength of 
stress release. Note that Figure 3b does not show the zones 
of small stress increase that would occur at the periphery of 
the subevent areas after their rupture [see Andrews, 1980]. 
As the mainshock ruptures, the stress drops from the dashed 
line down to the baseline level, releasing the longer wave- 
length stress. For this example (Figure 3b), the magnitude of 
the stress change is the same for the subevents and the main 
shock. 

A minimum subevent size is required so that the stress 
does not become infinite, when the stress drop is indepen- 
dent of scale length. Adding peaks of stress with equal 
amplitude and smaller and smaller scale lengths (as in Figure 
3 b) would result in an infinite stress if there was no minimum 
subevent size. 

HIGH-FREQUENCY SPECTRAL DECAY AND THE 
FRACTAL DIMENSION OF SUBEVENTS 

I determine the high-frequency falloff of the main shock by 
evaluating the total high-frequency energy of the level 1 
subevents, for frequencies higher than the corner frequency 
f0max of the smallest subevent. Here, the term "total ener- 
gy" refers to the spectral amplitude of the energy at some 
given frequency for all the level 1 subevents, rather than the 
energy found from integrating over a range of frequencies. 
The low-frequency spectral amplitude of the main shock 
(below the corner frequency) is specified by its seismic 
moment. The corner frequency of the main shock spectrum 
is determined by its radius. Given these two constraints, the 
total high-frequency energy of the subevents for f > f0max 
will control the overall falloff of the main shock spectrum for 
frequencies above the main shock corner frequency. 

I assume that the high-frequency energy of the subevents 
is incoherent, so that their energy is additive [see Boat- 
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wright, 1982]. Therefore the high-frequency energy of the 
main shock Emain can be expressed as the integral of the 
energy of all of the level 1 subevents, such that 

fR •max Emain = Esu b dN, (9) 
rmn 

where Esu b is the energy for each level 1 subevent and Rma x 
is the radius of the largest subevent. Using (1) and d(ln Rsub) 
= R s• dR sub, I find 

dN pRs-•-i o = R main dR sub- (10) 

Since the concern is with frequencies above the corner 
frequency of Rmi n, the high-frequency form of the energy 
spectrum (5) can be used. Substituting (5) and (10) into (9) 
produces 

2 ,c2'/ ,c2 - 2'/ 
omain d omain d 

fR•max _ p Mo2subRs•- 1RO f•2'/ f2- 2,/ dR -- main 0sub sub' 

rmn 

(11) 

Here M0mai n and M0sub represent the seismic moment of the 
main shock and subevents, respectively, and f0main and f0sub 
denote the corner frequencies of the main shock and sub- 
events. Since f0 oc R -• and M 0 oc R3+*/, (11) becomes 

fR •max R6 + 2*/- 0 - 2'/_ 6 + 2*/- 0 - 2'/- • dRsub (12) ' ' main -- p R sub ß 
nun 

The purpose here is to use (12) to derive an expression for 
% the spectral falloff of the main shock and the subevents. 
From (12), it is clear that 3* is dependent on the constant of 
proportionality p as well as on D and r•. The high-frequency 
falloff is not uniquely determined by D and r•. To specify p, 
I consider the case where D = 2 and the sum of the subevent 

areas equals the main shock area [also Boatwright, 1982]. 
The total area of the subevents is given by 

fR •max 2 A = rrRsu b dN. 
mm 

Substitution for dN (10) results in 

(13) 

A = PRmainrr Rs-• + •dRsu b. (14) 
mm 

For D = 2, I obtain 

2 R max 
A = p rr R main (ln R sub) l ( 15 ) R rain ' 

Letting A equal the area of the main shock 2 7rR main and 
rearranging terms yields 

1 
p = . (16) 

In (R max/R rain) 

Now substituting this expression for p into (12) results in 

R6 + 2*/- D - 2'/ 
main 

1 I Rmax 6 + 2,/ - D - 2'/- 1 In (Rmax/Rmin) dRmin Rsub dRsub' (17) 

Equation (17) will be satisfied only if 6 + 2 r/ - D - 2 3* 
equals zero. This can be confirmed by substituting zero for 
this expression in the exponents on both sides of the 
equation, producing 

o _ 1 fRY max R main- In (Rmax/Rmin) R s-•[ dR sub' 
rain 

Both sides of this equation equal one, and the equation is 
satisfied. Therefore equating the high-frequency energy of 
the main shock with the integral of the energy of the 
subevents yields the following expression for the high- 
frequency falloff: 

•/= 3 + '1 -D/2. (18) 

Equation (18) indicates that a subevent distribution with 
D = 2 and constant stress drop scaling (r• = 0) will produce 
a main shock with a falloff of w -2 (3* = 2) if the subevents fill 
the main shock rupture area. This is the high-frequency 
spectral falloff that is typically observed. The analysis above 
relies on the assumption that the subevents have the same 
spectral falloff as the main shock. In the next section I show 
that a D = 2 distribution of subevents with falloffs of w -3 
results in a main shock with a falloff of about w -2, for the 
case of constant stress drop scaling. Again, the subevent 
areas must fill the area of the main shock. This analysis also 
applies to producing the high-frequency energy for a level i 
subevent from the radiation of its constituent level i + 1 

subevents. R ma x would then be the largest level i + 1 
subevent within a particular level i subevent. 

COMPOSITE SPECTRUM AT MIDFREQUENCIES 

I showed above how the subevent energy sums to the main 
shock energy for frequencies above the corner frequency of 
the smallest subevent. The spectral shape of the composite 
event between the corner frequencies of the largest and 
smallest subevents was not discussed. For these intermedi- 

ate frequencies, the radiation of the composite earthquake 
would be a mix of both coherent and incoherent energy. 

As a first approximation, I assume that the subevent 
energy is incoherent over this frequency range and find the 
composite spectrum of the level 1 subevents for frequencies 
above the corner frequency of the largest subevent. There- 
fore the displacement spectrum of the composite event is 
proportional to the square root of the integral of the energy 
of the subevents [Boatwright, 1988], so that 

•-• comp •-• 2 = sub dN 
rain 

1/2 

(19) 

where llsub is the displacement spectrum of each level 1 
subevent and •-•comp is the displacement spectrum of the 
composite event. Substituting for llsu b from (3) and dN from 
(10) yields 

main 

•-•cømp= P min [1 + (f/fOsub)'/-• • dR sub ß (20) 
The integral in (20) was evaluated numerically at each 

frequency by summing the integrand over small increments 
of R sub. Figure 4a shows the results for subevents with w -2, 
D = 2, and r/= 0. Parameter p was given by (16), such that 
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Fig. 4. (a) Solid line is composite displacement spectrum for subevents with D -- 2, ,/= 0, and w -2 obtained from 
(20). Long-dashed line is the displacement spectrum for the corresponding main shock with the same stress drop as the 
subevents and a falloff of w -2. Short-dashed line is the spectrum for the long-wavelength component of slip occurring 
over the diameter of the main shock rupture (see text). (b) Solid line is composite displacement spectrum for subevents 
with w -3 (D = 2, ,/ = 0) determined from (20). Dashed lines same as in Figure 4a. For both Figures 4a and 4b, 
subevents fill main shock rupture zone. 

the sum of the subevent areas equals that of the main shock. 
For both examples depicted in Figure 4, the smallest sub- 
event has a radius 10 -4 times that of the main shock. The 
largest subevent has a radius 0.5 times the main shock 
radius. The f0min is the corner frequency of the largest 
subevent. Figure 4a also shows the displacement spectrum 
for the corresponding main shock with the same stress drop 
as the subevents and an •o -2 falloff. This is the spectrum that 
the composite spectrum of the subevents should approxi- 
mate. 

For frequencies between f0min and f0max, the slope of the 
composite spectrum is somewhat less than •o -2. At frequen- 
cies between f0min and 10f0mi n the falloff is about •o -•'6. The 
falloff steepens to w -2 as frequency increases. At frequen- 
cies above f0max, the high-frequency spectral level of the 
composite event matches that of the main shock with an •o -2 
falloff, in accord with the previous section of this paper. If 
portions of the subevent energy summed coherently, the 
slope of the composite event would change for frequencies 
between f0min and f0max. This will tend to steepen the slope 
of the composite spectrum, since the lower frequency energy 
will tend to sum coherently, producing larger spectral am- 
plitudes at lower frequencies. A more accurate method for 
determining the composite spectrum between f0min and f0max 
is to sum the subevent radiation in the time domain using 
time delays determined by a stochastic rupture simulation 
[e.g., Boatwright, 1988]. Such a simulation is beyond the 
scope of this paper. 

The spectrum of the composite event must also include the 
contribution from slip with a half-wavelength corresponding 
to the diameter of the main shock rupture zone (dashed line 
in Figure 3a). This long-wavelength slip accounts for most 
of the moment of the main shock. In Figure 4, I represent 
this component by a spectrum with the low-frequency level 
and corner frequency of the main shock (short-dashed line in 
Figure 4a). For illustrative purposes, I choose a spectral 
falloff of •o -3 for this long-wavelength component of slip, 
consistent with rupture nucleation and smooth propagation. 
For this falloff the spectral amplitude produced by the 
long-wavelength component of slip intersects the composite 

spectrum of the subevents at a frequency just above the f0min 
(Figure 4). 

Thus the composite event would have a falloff of about 
•o -3 for frequencies between the corner frequencies of the 
main shock and the largest subevent and falloffs less steep 
than •o -2 for frequencies between f0min and f0max, for this 
summation procedure. The overall falloff of the composite 
spectrum is •o -2, for frequencies above the corner frequency 
of the main shock. 

Figure 4b contains the composite displacement spectrum 
for subevents with •o -3 falloffs. Again D = 2, r/= 0 and the 
subevents fill the main shock area. The falloff of the com- 

posite spectrum equals •o -2 for frequencies between the 
corner frequencies of the largest and smallest subevents. 
Above the corner frequency of the smallest subevent, the 
composite spectrum falls off as •o -3. As in the previous 
example, I include the spectrum for the long-wavelength 
component of slip corresponding to the main shock rupture 
diameter as the short-dashed line in Figure 4b. If one 
determines a spectral falloff for the composite event using 
the spectral amplitude of the composite event at f0max and 
the spectral amplitude of the main shock atf0main, the overall 
falloff of the composite spectrum approaches •o -2. 

The composite spectra demonstrate that subevents with 
falloffs of w -2 or w -3 will produce a composite event with an 
high-frequency falloff of approximately w -2, if D = 2, r/- 
0, and the subevents fill the main shock rupture zone. 

FRACTAL DIMENSION OF SUBEVENTS AND THE 

SCALING OF FAULT STRENGTH WITH DISTANCE 

In this section, I show how the fractal dimension of the 
subevents is a consequence of the scaling of fault strength 
with distance on the fault, so that D and •/ are related. 
Following Hanks [1979] and Andrews [1980], I consider 
stress to be a self-similar random function of position on the 
fault. Figure 5 shows a perspective plot of a realization of 
stress that varies in a self-similar, random manner on a fault 
plane. The height of the topography is proportional to the 
stress above some average value. The "water level" repre- 
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distance 

Fig. 5. Perspective plot of a realization of random, self-similar 
stress along a fault plane. The height of the topography is propor- 
tional to the stress at that position on the fault plane. The zero level 
corresponds to the average stress. Areas with below-average stress 
are zeroed. When sampled along a line, the example shown here 
produces self-similar random traces with H = r/= 0.5. 

sents the average stress. For this plot, I have zeroed values 
of stress less than the average. The construction of this 
self-similar model is described below. 

If one samples the stress along any particular line in the 
fault plane, the resulting function is self-similar. The traces 
in Figure 6 are two examples of self-similar random func- 
tions that could represent stress along a line within a fault 
plane. These random functions have a Gaussian distribution 
of stress about some average value. Their construction is 
detailed later in this section. Self-similarity means that if one 
took a small segment of the trace with Ax and expanded it 
along the x axis to equal the horizontal extent x of the 
original trace, it would be statistically identical to the origi- 
nal trace, scaled in amplitude by the factor (Ax/x) H [Man- 
delbrot, 1977]. H is called the Hurst exponent and has values 
between zero and one. Traces with smaller values of H have 

H =q =0 

[I I I I I 11 1111111 I I IIII 

H =q =0.5 

0 distance 20 

Fig. 6. Two examples of self-similar, random functions repre- 
senting stress sampled along a line in a fault plane. The top trace has 
H = r/= 0, a power spectrum proportional to 1/k (D = 2), and a 
stress drop independent of scale length. The bottom trace has H = 
r/= 0.5, a power spectrum proportional to k -2, and a stress drop 
that decreases with smaller length scales. Distance is given in 
arbitrary units. 
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Fig. 7. Plots of self-similar random functions at two different 
length scales. The traces are plotted such that there is equal 
resolution for each length scale, relative to the total length of each 
plot (see text). The traces on each side of the figure are plotted on 
the same vertical scale. The original traces are shown in Figure 6. 
(a) Traces for H = r/= 0, and the standard deviation is independent 
of scale length as shown by the equal amplitudes of the top and 
bottom traces. (b) Traces for H = r/ = 0.5, and the standard 
deviation decreases as the scale length decreases. 

rougher character. The traces in Figure 6 have H values of 0 
and 0.5. 

Following Andrews [1980], I assume that the average 
stress drop over an area on the fault is proportional to the 
standard deviation of the spatial variations in stress over that 
area. The standard deviation of stress describes the average 
amplitude of the stress variations. Rupture of a main shock 
or subevent removes the spatial fluctuation in stress over the 
dimension of the main shock or subevent rupture zone (see 
also Figure 3b). Thus the stress drop will be about equal to 
the amplitude of the stress variation and proportional to the 
standard deviation of the stress variations. 

Since the standard deviation scales with the amplitude of 
a trace, the standard deviation of a self-similar trace will be 
proportional to R H, where R is the distance sampled. The 
stress drop averaged over some rupture zone with radius R 
will be 

Ao' oc R H. (21) 

Thus H describes the scaling of stress drop with source 
radius, and is equal to •/(see (7)). 

Figure 7 illustrates how the standard deviations of self- 
similar functions scale with distance sampled. Here I show 
two self-similar functions viewed at two different length 
scales that vary by a factor of 20. The traces in this figure 
were derived from the functions in Figure 6. In Figure 7, 
each function is displayed at two different length scales such 
that the resolution in each plot is equal, relative to the total 
length of that plot. For each of the top traces, this was 
accomplished by low-pass filtering the corresponding func- 
tion in Figure 6. Each bottom trace is a short sample of the 
corresponding function in Figure 6. 

For the case with H = 0 (Figure 7a) we see that the 
standard deviation of stress does not change significantly 
with length scale. The bottom trace in Figure 7a has about 
the same standard deviation as the top trace. For this case, 
the stress drop or strength is independent of scale length and 
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r/ equals 0. In Figure 7b, H equals 0.5, and the standard 
deviation of stress decreases as the scale length is decreased. 
Now the stress drop will decrease as smaller portions of the 
fault are considered. For this case, the stress drop will be 
proportional to R ø'5 . 

Let the top trace in Figure 8 represent stress sampled 
along a line in a fault plane. The trace shown has H = r/ - 
0.5. I define the rupture zones of the main shocks on the 
fault as areas where the stress on the fault plane is above 
average (the zero level of the plot). Thus the rupture zone 
lengths are delimited by the zero crossings. I chose this 
definition of rupture length because the distance between 
zero crossings of a self-similar function defines a fractal set 
[Mandelbrot, 1977]. If we view the stress as a topographic 
surface whose height varies in a self-similar manner as a 
function of position on the fault plane (Figure 5), the rupture 
zone areas would correspond to islands whose rupture zone 
perimeters are their coastlines. Mandelbrot [1977, p. 231] 
states that the number of islands with areas greater than A is 

N(A) • A -(2- H)/2. (22) 

Here H is the Hurst exponent of any trace found from taking 
a section of the topographic surface. The choice of water 
level is arbitrary and does not affect this relation. Since area 
is proportional to R 2, this equation becomes 

N(R) •: R -(2-H). (23) 

Thus the size distribution of rupture zones on the fault plane 
is controlled by the value of H for the self-similar traces that 
describe the stress variations on the fault plane. Comparing 
the forms of (2) and (23), we find that 

D=2-H=2- •/. (24) 

Here D describes the size distribution of rupture zones on a 
fault. I will show below that (24) is also valid for character- 
izing the size distribution of subevents within the main shock 
and within other subevents. 

Equation (24) states that the size distribution of rupture 
zones on a fault (defined by zero crossings) is controlled by 
the scaling of strength on the fault. This point will be utilized 
in the section on b value. 

I assume that the subevent areas correspond to small-scale 
perturbations of stress on the fault plane. Figure 8 illustrates 
how subevents at various levels can be identified in a 

self-similar random function of stress. Consider one of the 

main shock rupture zones defined by two of the zero 
crossings in the top trace of Figure 8. The level 1 subevents 
for this main shock are shown in the middle trace of Figure 
8. This trace was obtained by high-pass filtering the stress 
function of the top trace with a corner wavelength equal to 
about twice the rupture diameter of the main shock. This 
filtering removes the long-wavelength "hill" of stress that 
represents this particular main shock rupture area in the top 
trace. I define the level 1 subevents as the portions of the 
middle trace of Figure 8 that are above the zero level. A 
similar procedure can be used to isolate the level 2 subevents 
in one of these level 1 subevents. The bottom trace in Figure 
8 is a portion of the middle trace that was high-pass filtered 
with a corner wavelength that is about twice the diameter of 
the level 1 subevent selected. The level 2 subevents are the 

areas above the zero level in the bottom trace. 

Ii'1 I I•I•IVl I•'1•1 mainshocks 
•q• • level 1sub-events 

•-x./"' L/ •, level 2 sub-events 
distance 

Fig. 8. Plots of different portions of a self-similar function 
illustrating main shock rupture areas and subevents on level 1 and 2 
(see Figure 1). The function represents the random component of 
stress along a fault. The zero level (horizontal line on each plot) is 
the average stress. The plots are normalized to the peak amplitude 
of the trace in each plot. In the top trace, main shock rupture zones 
are taken to be areas above the zero level. The middle and lower 

traces are successive blow-ups of portions of the upper trace, after 
high-pass filtering to remove the long-period component of stress 
(see text). The middle trace shows the level 1 subevents (areas 
above horizontal line) within one of the main shock rupture areas. 
The bottom trace depicts level 2 subevents within one of the level 1 
subevents. This particular example has H = r/= 0.5. 

The size distribution of the subevents at any level of 
rupture obeys the relationship in (23). If we take a small 
portion of a self-similar trace and expand it horizontally, the 
slope of the original long-period trend can be reduced until it 
is essentially horizontal. The subevents riding on the long- 
period trend will now be the areas on the trace above this 
horizontal line. Because of self-similarity, the size distribu- 
tion of the subevents, as defined by the crossings of this 
horizontal line, will be identical to the size distribution of the 
zero crossings of the original trace. The size distribution for 
the subevents must be identical to the size distribution 

describing the zero crossings, that is, (23). 
Thus the size distribution of subevents within the main 

shock or subevents within other subevents is controlled by 
the scaling of strength (stress drop) on the fault, when the 
subevents are defined in the manner described above. Equa- 
tion (24) relates the fractal dimension D of the subevent 
distribution to the scaling of strength on the fault. When the 
fault strength is scale invariant (H = r/ = 0), D is equal to 
2 and the number of subevents is inversely proportional to 
their area. 

Figure 9 shows map views of two realizations of subevents 
on a main shock rupture zone. This figure illustrates how the 
size distribution of subevents is related to the scaling of 
strength (r/) on the fault plane. These realizations were 
derived from two-dimensional self-similar functions that 

were high-pass filtered to remove the long-wavelength com- 
ponents with wavelengths comparable to the length of the 
main shock rupture zone (i.e., the length of one of the sides 
in Figure 9). Darkened areas in Figure 9 are portions of the 
fault plane with higher than average stress, and the white 
areas represent lower than average stress. Therefore the 
level 1 subevent rupture areas appear as black islands with 
various sizes and geometries along the fault plane. The two 
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Fig. 9. Shaded map views of two examples of self-similar ran- 
dom stress along a fault plane. Darkened areas have higher than 
average stress and are taken to be the rupture areas of subevents. 
White areas have lower than average stress. These pictures of 
subevent areas can be compared to the more schematic model of 
subevents shown in Figure 1. Shown with each example are the 
one-dimensional power spectrum P(k), the fractal dimension D, and 
the high-frequency spectral falloff w -• for that example, for p = [In 
(Rmax/Rmin)]-1. Also written by each panel are the b values found 
if the shaded areas are interpreted as rupture zones of aftershocks. 

examples shown in Figure 9 differ in their size distribution of 
subevents, with Figure 9b (•/= 0.5) having fewer subevents 
with smaller areas than Figure 9a (•/= 0). 

For the case when the subevents fill the main shock 

rupture area, the rupture area of each subevent must be 
larger than the area of the corresponding island of high 
stress. The analysis above only requires the subevent rup- 
ture area to be proportional to the area of the island of high 
stress. It is reasonable to expect the final rupture size of each 
subevent (Rsub) to exceed the area of the island. 

D, •/, and H are related to the high-wave number falloff of 
the power spectrum of the self-similar trace. This was 
demonstrated by Andrews [1980], and the procedure in the 
next paragraphs follows his work. For a self-similar random 
function, the one-dimensional power spectrum P(k) must be 
a power function of the wave number k, where k = 2 •r/A and 
A is the wavelength, such that 

P(k) oc k -n. (25) 

The relationship between n and H can be found from 
calculating the standard deviation of the random stress 
function after it has been band-pass filtered between certain 
wavelengths. By band-pass filtering the random trace, we 
can look at the variation of stress over different length 
scales. Since the standard deviation of the band-pass-filtered 
function increases with the bandwidth of the filter, it is 
necessary to band-pass filter over equal logarithmic intervals 
(e.g., octaves) of wavelength when comparing the standard 
deviation at different length scales. This is a consequence of 
the definition of self-similarity. A self-similar function has 
the same statistics after logarithmic changes in scale length. 
Only by using equal logarithmic intervals between the lower 
and upper limits of each band-pass filter will the upper limits 
of different filters scale by the same factor as the lower limits 
and the center wavelengths. 

To estimate the standard deviation of a band-pass-filtered 
trace, I calculate the standard deviation s of stress over an 
octave interval of wavelength along the fault. The variance 
s 2 of a function after it has been band-pass filtered between 
an octave interval of wavelength can be found from 

f2k0 s 2 oc P(k) dk (26) 
dko 

Here k 0 is inversely proportional to some wavelength (A) or 
scale length on the fault. The limits of integration k0 and 2k0 
correspond to an octave interval of the wavelength on the 
fault. 

By integrating (26), we can find the scaling of the stress 
drop (or strength) with distance as a function of the exponent 
n of the power spectrum of the stress drop trace. As 
described above, we equate the dependence of the standard 
deviation of the stress on scale length ,• to the dependence of 
stress drop on source radius R. Thus k0 will be inversely 
proportional to R. Substitution from (25) and integration 
produces 

S 2 or k• -n+! oc R n- ! n•l 
(27) 

s 2 oc In (2ko/ko) = In 2 n=l. 

Therefore the standard deviation of stress s over a distance 

R is proportional to R (n-l)/2. Letting the stress drop be 
proportional to the standard deviation of stress, we have 

Acr or R (n- 1)/2 (28) ß 

Comparing this expression with the right side of (7), we see 
that 

H = ,/ = (n- 1)/2. (29) 

Thus the scaling of stress drop with source size is related to 
the exponent of the power spectrum of the stress drop. Note 
that for P(k) = k -• (n = 1), the average stress drop is 
independent of source size and the average fault strength is 
independent of scale length (H - ,/ = 0; see also Andrews 
[1980]). 

The two-dimensional self-similar models in Figures 5 and 
9 and the self-similar traces in Figures 6-8 were constructed 
by specifying their power spectra in the wave number 
domain. Each self-similar trace was made by filtering a 
sequence of Gaussian random numbers in the wave number 
domain so that its power spectrum corresponded to (25). The 
values of n were derived from (29). The original random 
number sequence had a white spectrum. Both the original 
and filtered sequences have a Gaussian distribution about 
the mean. 

For the two-dimensional models, a Gaussian random 
number generator was used to assign a value for each point 
in a two-dimensional grid. This grid was transformed to the 

wave number domain (k•, k•) with a two-dimensional 
Fourier transform. In the wave number domain, the spectra 
were filtered so that their two-dimensional power spectra 
were of the form 

P2D(kr) or k• -n- 1. (30) 

Here k r is the radial wave number. The filtered spectra were 
then transformed back into the spatial domain. Note that 
when a two-dimensional function with a power spectrum 
given by (30) is sampled along a line, the one-dimensional 
power spectrum of the resulting trace will be given by (25). 
Further details on the construction of two-dimensional, 
random functions are given by Frankel and Clayton [1986]. 
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HIGH-FREQUENCY SPECTRAL FALLOFF AND 
THE SCALING OF FAULT STRENGTH 

We can use (24) to replace D in (18) and find 3' as a 
function only of r/, the dependence of stress drop on radius. 
The result is 

3'=2+ 1.5,/. (31) 

In terms of fractal dimension, we find 

3' = 5- 1.5D. (32) 

These expressions define the falloff for a particular scaling of 
strength along the fault. These formulas presuppose that p = 
[ln (Rmax/Rmin)] -1 . 

When the stress drop is independent of source radius (and 
seismic moment), r/ = 0, D is 2, and the spectral falloff is 
w -2. The last result was also found by Hanks [1979] and 
Andrews [1981]. This corresponds to a faulting model where 
the number of subevents is proportional to the ratio between 
the areas of the main shock and a subevent (equation (1) with 
D = 2). Boatwright [1982, 1988] and Joynet and Boore 
[1986] have previously reported that such a summation 
process produces an w -2 falloff. The work presented here 
indicates that the w -2 falloff that is typically observed for 
earthquake displacement spectra can be a direct result of the 
scale invariance of strength along fault zones. 

This model of complex rupture predicts that spectral 
falloffs steeper than w -2 can be produced in two ways. First, 
if D = 2 and the subevents do not fill up the area of the main 
shock, then p is less than [In (Rrnax/gmin)] -1. This would 
lower the absolute amplitude of the composite spectrum in 
Figure 4a, producing less high-frequency energy. A main 
shock with an overall falloff steeper than w -2 for frequencies 
between f0main and f0max will result. 

When the stress drop increases with moment (r/> 0), the 
spectral falloff can also be steeper than •o -2. In this case, D 
is less than 2 and there will be fewer small subevents relative 

to large subevents (see Figure 9). This will produce less 
high-frequency energy compared to D = 2, for the same 
value of p. Given the same p value, distributions with D < 
2 (r/ > 0) will produce main shocks and subevents with 
steeper high-frequency falloffs than the case with scale- 
invariant strength. For the stress field shown in Figure 9b 
with r/ = 0.5 and D - 1.5, the high-frequency falloff is 
w -2'75 for p = [In (gmax/gmin)] -1 (see equation (31)). 

THE b VALUES OF AFTERSHOCK SEQUENCES AND 
THE SCALING OF STRENGTH ON FAULTS 

The self-similar model for subevents shown in Figure la 
can also be applied to the rupture zones of individual 
earthquakes on a fault, to arrive at an expression between 
the b value and the scaling of stress on the fault. The 
frequency-magnitude relation can be expressed as 

log N = a - bM. (33) 

regardless of its area, the b value for a fault would simply 
reflect the number versus size characteristics of the rupture 
areas. The validity of this assumption is not obvious. Some 
model for the loading of faults or fault segments would be 
needed to establish the recurrence intervals for faults or fault 

segments of different sizes. 
For an aftershock sequence occurring on a fault, however, 

it is reasonable to postulate that the size distribution of 
aftershock rupture zones directly controls the b value. Such 
aftershocks are thought to occur on patches of high stress 
that are loaded by the failure of the main shock. Once one 
particular aftershock fails, it seems unlikely that it will fail 
again in that aftershock sequence. It will no longer be 
loaded. This is similar to what would occur for subevents 

within an earthquake. Once a particular subevent fails, it will 
probably not rupture again during that earthquake. If each 
aftershock rupture zone fails only once in a given sequence, 
then the size distribution of rupture zones corresponds to the 
number of aftershocks observed over a period of time as a 
function of rupture area or magnitude. 

In this section, I show that the b value of aftershock 
sequences is controlled by the scaling of strength on a fault. 
I use a model with a self-similar distribution of aftershock 

rupture zones on a fault, as in Figure 1 a. Again the strength 
of the fault is assumed to be described by a random self- 
similar function such as those in Figure 8. I assume that 
aftershocks occur in areas where the strength along the fault 
zone exceeds some threshold value. Aftershocks within the 

rupture zone of the main shock could be interpreted as 
subevents that do not rupture during the main shock, but fail 
in a time-dependent manner afterward. Thus the above 
analysis relating the scaling of fault strength to the size 
distribution of subevent rupture areas is also applicable to 
the size distribution of aftershock rupture areas. Let the 
number of aftershocks with radii greater than R be propor- 
tional to R-o. The fractal dimension D describing the size 
distribution of the aftershock rupture areas will equal 2 - 

Now I derive the relation between b value and the fractal 

dimension D. It is typically observed [e.g., Thatcher and 
Hanks, 1973; Kanamori and Anderson, 1975] that log M 0 = 
1.5M + C, where M is either the local magnitude or surface 
wave magnitude and C is a constant. Using other magnitude- 
moment relations would alter the following equations. After 
substitution for M, (33) becomes 

log N = c -• log M 0 (34) 
1.5 

Since M 0 is proportional to R 3+• (equation (7)), (34) yields 

(3 + 
log N = d- log R. (35) 

1.5 

Comparing this equation with (2), we see that 

D- (3 + rl)b/1.5 (36) 

Here N is the number of events occurring over some period 
of time with magnitudes greater than M, and a is a constant. 

Determining the b value from the size distribution of 
rupture zones requires an assumption about how often 
individual rupture areas produce earthquakes during a given 
time period. If each rupture zone had the same repeat time 

or 

b = 1.5D/(3 + rl). (37) 

Using the relation between D and r/ (equation (24)), pro- 
duces 
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3- 1.5•/ 
b - . (38) 

3+9 

Hanks [1979] previously suggested that stress drop scaling 
with moment and b value should be related. Here I have 

quantified the relation. 
Thus when stress drop is independent of source size (• -- 

0), the b value is equal to 1 (equation (38)). This value is 
similar to the average b value reported for various after- 
shock sequences [e.g., Utsu, 1971]. The b value of 1 is 
simply a reflection of stress drop or crustal strength being 
independent of length scale. We have demonstrated above 
that a scale-invariant fault strength creates a distribution of 
rupture sizes where the number of earthquakes with any 
given rupture area is inversely proportional to that area (see 
also Figure 9a). 

Many other studies have shown that if the number of 
rupture areas is inversely proportional to their area, the b 
value is 1 [Kanamori and Anderson, 1975; Hanks, 1977; 
Andrews, 1980; Aki, 1981; Turcotte, 1989; Rundle, 1989]. 
However, these studies implicitly assumed that the repeat 
time of any given fault or fault segment is independent of its 
size. I only consider the b value of aftershock sequences to 
obviate this problem. It is intriguing, though, that b values 
taken over a large region generally are about 1. This may 
imply that the recurrence interval is, on average, indepen- 
dent of the rupture size when earthquakes occurring in a 
large region are considered. 

When the strength or stress drop increases with distance 
(r/> 0), (38) predicts that the b value will be less than 1. In 
this instance, there will be relatively fewer small rupture 
zones compared to large ones, than for the case with 
scale-invariant stress. Note the b values shown in Figures 9a 
and 9b. The aftershock subevent distribution in Figure 9b 
corresponds to a b value of 0.64. When the stress drop 
decreases with increasing length (r/< 0), the b value will be 
greater than 1. 

DISCUSSION 

This paper demonstrates how a spectral falloff of 0)-2 and 
a b value of 1 for aftershock sequences can be a consequence 
of strength that is scale-invariant along a fault plane. The 
question remains as to whether scale invariance of strength 
is valid for all faults and all length scales. Perhaps the 
strongest evidence for scale-invariant strength on faults is 
from the scaling of earthquake stress drops with rupture 
dimension. There are many studies which have shown that 
earthquake stress drops are generally independent of source 
dimension and seismic moment for earthquakes above mag- 
nitude 3 [Aki, 1967; Kanamori and Anderson, 1975; Hanks, 
1977]. For smaller events, it is crucial that proper correc- 
tions for path effects (e.g., the site response) be applied 
before determining the source radius and stress drop from 
the pulse widths or corner frequencies. Frankel and Wen- 
nerberg [ 1989] found that stress drop remained constant with 
moment for two events at Anza, California, with magnitudes 
of 1.4 and 3.1. Many more studies of stress drop scaling of 
small earthquakes must be done using empirical path correc- 
tions to remove the effects of site response. 

The results of this paper indicate that the overall high- 
frequency falloff of a main shock composed of subevents 
may not be directly related to the physics of dynamic 

rupture. The model presented here implies that the falloff is 
essentially determined by the size distribution and stress 
drop scaling of the subevents. An 0)-2 falloff will result for D 
- 2 and ,/ = 0 regardless of whether the falloff of the 
constituent subevents is 0)-2 or 0) -3 if the subevents fill the 
area of the main shock (Figure 4). Of course, the physics of 
dynamic rupture ultimately controls whether the subevents 
will fill the area of the main shock. Furthermore, the 
summation of the subevent spectra for frequencies between 
f0min and f0max is a consequence of the timing of the 
subevents and hence of the rupture dynamics. 

This self-similar model of earthquake rupture has implica- 
tions to how the radiation from large earthquakes can be 
simulated by summing the waveforms of smaller earth- 
quakes. One problem with these simulations has been the 
difficulty of matching both the high-frequency and low- 
frequency spectral amplitudes of the larger event by simply 
summing up the waveforms of a smaller event [see Boat- 
wright, 1988]. Figure 3a illustrates one way of viewing the 
problem. The slip of the subevents by themselves cannot 
account for the total slip of the main shock. However, I 
postulated that the total high-frequency radiation from these 
subevents accounts for the high-frequency energy of the 
main shock. When summing up the radiation from small 
events to make that of a larger event, it is necessary to add 
low-frequency energy so that the slip of the larger event is 
duplicated. In Figure 4 this was accomplished by adding a 
long-wavelength component of slip with a spectrum indi- 
cated by the short-dashed lines. Boatwright [1988] addresses 
this problem by low-pass filtering the waveforms of the small 
events before they are summed to simulate a larger event. 
This filtering essentially boosts the low-frequency energy of 
the small events relative to their high-frequency energy. 

It has been reported that aftershocks of large earthquakes 
generally do not occur in portions of the fault where most of 
the slip was released during the main shock [e.g., Doser and 
Kanamori, 1986; Mendoza and Hartzell, 1988]. Such behav- 
ior is consistent with the self-similar model of subevents 

shown in Figure 1 a. If stress drop is constant or increases 
with source radius, areas of the fault plane with the largest 
subevents will have the largest slip (see Figure 3a). These 
largest subevents would correspond to the "asperities" 
often found in the analysis of teleseismic and local records 
for large earthquakes. Aftershocks may be located on high- 
strength patches on the fault that did not rupture during the 
main shock. If this is the case, the aftershock rupture areas 
should not be located in the subevent areas of the main 

shock, including the largest subevents which produced most 
of the slip. 

The predictions and validity of the self-similar model of 
rupture presented in this paper should be evaluated with 
numerical simulations of dynamic rupture propagation using 
realistic relations for fault friction [e.g., Okubo, 1989]. Such 
simulations should consider rupture growth and stopping 
behavior when the fault strength and stress are self-similar 
random functions, incorporating variations on a variety of 
length scales. 
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