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[1] Finite-fault source inversions reveal the spatial
complexity of earthquake slip or prestress distribution
over the fault surface. In this paper we discuss a
stochastic model that reproduces the spatial variability and
the long-range spatial correlation of the slip distribution of
the 1979 Imperial Valley earthquake. We have found that
stochastic models based on non-Gaussian distributions are
better suited to describe the spatial variability of the slip
amplitude over the fault. We also show that a stochastic
modeling of the slip amplitude based on a Gaussian
distribution fails to reproduce the spatial variability
observed in the original slip distribution. The stochastic
models can be used to deduce ground motion from other
earthquakes statistically similar to Imperial Valley. INDEX
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1. Introduction

[2] Earthquakes are complex phenomena [e.g., Boat-
wright, 1984]. An origin of complexity in earthquakes has
been attributed to nonlinear effects in the friction law on the
fault [Carlson and Langer, 1989]. On the other hand, Rice
[1993] suggests geometric disorder of fault zones and
fractal-like surface roughness of faults as the causal candi-
dates responsible for seismic complexity. Even relatively
simple models of faulting predict high spatial variability in
stress drop over the fault [Madariaga and Cochard, 1994].
Although the origin of complexities in earthquake is still the
object of debate, finite-fault source inversion of well
recorded earthquakes reveal the complexity of both the slip
and prestress spatial distribution over the fault surface.
Evidence of the complex behavior was presented in papers
by Das and Aki [1977], Aki [1979], Day [1982], and
Boatwright [1984]. Hartzell and Heaton [1986] and Beroza
and Spudich [1988] computed the rupture history of the
Morgan Hill earthquake of 1984 and showed that the spatial
distribution of slip over the fault surface was very hetero-
geneous. Regions of high slip alternate with regions where
little slip occurred. Using near-source strong motion data to
compile the prestress generated during a fault rupture for

several recent earthquakes Bouchon [1997] concludes that a
‘‘consistent feature of the four earthquakes studied is the
strong heterogeneity of the stress drop distribution over the
fault.’’ These studies also suggest that the spatial hetero-
geneity of the prestress is scale invariant (or self-similar).
By scale invariant we mean that the spatial heterogeneity is
statistically invariant under a change of scale length. These
results are in good agreement with the observation that fault
surface is also scale invariant and have asperities over a
continuum of scale lengths [Power and Tullis, 1991].

2. Formulation of the Stochastic Model

[3] There are two basic hypotheses that underlie our
study. First, a stochastic model can capture some of the
main features of the heterogeneous spatial distribution of
slip or prestress along the fault surface. Second, that the
parameters of the stochastic model can be inferred, although
indirectly and approximately, from a study of the statistical
properties of the slip or prestress spatial distribution. The
simple model proposed here consists of a convolution in the
Fourier space between random variables (white noise) X and
some function with power law dependence k�n/2. The
scaling exponent measures the departure from the non-
correlated random variable (white noise); k � jkj is the
wave number magnitude. Such a stochastic model can be
understood as a fractional Brownian motion that reduces to
a random walk in its simplest manifestation—with n = 2
[see Peitgen and Saupe, 1988; Falconer, 1990]. Mathemati-
cally the stochastic model Yx is given by the following
relationship:

Yx /
XN

s¼1

k�n=2Fk X½ � exp 2pi x� 1ð Þ s� 1ð Þ=N½ � ð1Þ

for a set of random variables X distributed over a one-
dimensional lattice of length N. The sum in equation (1)
goes from 1 to N; s is related to k by k = 2ps; Fk[X] is the
discrete Fourier transform of the random variables X, and x
is the discrete position on the one-dimensional lattice.
According to this, the power spectrum P(k) associated to
Yx will be given by the following relation:

P kð Þ ¼ Fk Yx½ �j j2/ k�n ð2Þ

[4] In his seminal work on stochastic modeling of pre-
stress spatial distribution, Andrews [1980] discussed a
stochastic model based on the same formulation. In his
model, there are two characteristic length scales, the depth
of the brittle seismogenic region (
104 m) and the grain
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size of the material (
10�2 m), bounding a continuum of
length scales with no other characteristic length scale.
Accordingly, a single model with the appropriate scaling
property will reproduce the spatial complexities at every
relevant length scale between these two characteristic length
scales. A consequence of this formulation is that the slip and
prestress spectral amplitudes have a functional behavior
similar to the one given in equation (2). In Andrew’s model,
the white noise was generated with Gaussian random
variables (J. Andrews, personal communication, 2001).
Von Seggen [1981] and Herrero and Bernard [1994] adop-
ted a similar view.

3. Stochastic Model for the 1979 Imperial Valley
Earthquake Slip Spatial Distribution

[5] A faulting model of the 1979 Imperial Valley earth-
quake was determined by comparing synthetic particle
velocity with near-source strong ground motion [Archuleta,
1984]. The spatial distribution of the slip was calculated at
every 1.0 km along the downdip direction of the fault surface
that extends from the surface to 13 km and at every 2.5 km
along the strike that extends over 35 km (see Figure 1).
[6] The downdip resolution of the slip distribution is

different from the horizontal resolution. For this reason
we restrict the study of the spectral properties to the one-
dimensional horizontal layers. This is the best way to study
the spectral properties of the field using the information
available without relying on interpolation techniques that
can introduce some bias (see the discussion below). Each
layer has 14 values. (We ignore the values at the ends; these
values are all very small and close to zero.) The power
spectrum P(k) is computed for each of the 14 horizontal
layers; from these the mean power spectrum of the 14 layers
was estimated (Figure 2). The mean power spectrum fol-
lows a power law behavior with a scaling exponent close to
minus one. This implies a power law behavior for long-
range spatial correlation of the slip on the fault. The scaling
properties and fractal dimensions of the slip distribution of
several faults, including Imperial Valley, have also been
examined by Mai and Beroza [2002]. However there are
two important differences between their approach and ours
in the procedure used to compute the power spectrum. First,
they estimated the power spectrum a of 2D square lattice;

second, they interpolated the slip distribution (see also
Figure 2).
[7] Assuming that the slip spatial distribution Sx is

equivalent to (or generated through) a stochastic model
given by equation (1), we proceed to estimate the random
variables X (white noise). The Fourier transform of the slip
Fk[Sx] is estimated for the fourteen horizontal layers that
constitute the slip distribution illustrated in Figure 1. The
random variables are given by:

Xx / F�1
x Fk Sx½ � � kz

� �
ð3Þ

where Fx
�1 is the Fourier inverse, Sx and x represent

respectively the slip amplitude and the position along strike.
The exponent z is chosen in such way that the mean power
spectrum of X will have a scaling exponent close to zero.
The mean is estimated over the 14 layers. The probability
density function (PDF) associated with X is thus estimated.
[8] We then proceed to determine what theoretical model

will provide a best fit to the PDF of X. Three candidates are
considered: the Gauss distribution, the Cauchy distribution
and the more general symmetric Lévy distribution [Uchai-

Figure 1. The spatial distribution of the slip parallel to
strike for 1979 Imperial Valley earthquake is mapped onto
the fault [Archuleta, 1984]. Contours of the slip illustrate the
spatial heterogeneity.

Figure 2. The mean power spectrum of slip for the fourteen
horizontal layers is illustrated (red dots). The empirical trend
of the power spectrum curve follows a power law behavior
with a scaling exponent equal to �0.78. The power law is
computed for scale lengths ranging from 5 km to 32.5 km.
Fluctuations around the power law behavior can be attributed
to a slow convergence to the theoretical curve—a behavior
observed for stochastic models described in section 2.
However, other mechanisms such as noise as well as
uncertainties in computing the slip can also be responsible
for the deviations. For comparison we also plot the curve of
the mean power spectrum of the horizontal layers of the
interpolated slip distribution (black dots). The best straight
line (black) that fits the log-log curve of the power spectrum
of the interpolated slip is �1.8. The slip spatial distribution
was bilinearly interpolated to a 0.5 � 0.5 km grid. Note how
the curve of the interpolated slip distribution separates from
the curve of the original slip. In the physical space (slip on the
fault), this difference implies that long-range spatial correla-
tion is not handled properly. The small shift in the wave
number observed between the two curves is due to the
‘‘discretization’’ in the Fourier space.
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kin and Zolotarev, 1999]. The Lévy distribution is charac-
terized by four parameters a, b, g and m. The parameter a,
with 0 < a � 2, controls the rate of falloff of the tails of the
PDF. The larger the value of a, the less likely it is to find a
random variable far away from the central location. The
case a = 2 corresponds to the Gaussian law while a = 1
(with b = 0) corresponds to the Cauchy law. The parameter
b, with �1 � b � 1, controls the departure from symmetry
of the PDF curve. When b = 0, the PDF is symmetric and
centered about m. The parameter g, g > 0, is mainly
responsible for the PDF width whereas m is the location or
shift parameter of the PDF.
[9] For the three candidates, we have computed the model

parameters that minimize the expression for the sum of the
squared errors. The PDF of X and the best-fitting Gaussian,
Cauchy and the symmetric Lévy PDF are illustrated in
Figure 3. The best fit was obtained for the symmetric Lévy
distribution: a = 0.92, b = 0 (by default) g = 2.75, and m =
�0.42. However as shown in Figure 3 the Cauchy distribu-
tion (with a = 1 by default) also provides a very good fit with
g = 3.0, and m = �0.45. Finally Figure 3 shows that the best
fitting Gaussian distribution with standard deviation s =
4.48, and m = �0.57 is a poor surrogate to the PDF of X.
[10] The difference between a Gaussian and non-Gaus-

sian PDF has severe implications in the study and modeling
of the slip distribution. The difference is illustrated by
running the following numerical simulations. For the sake
of simplicity, we assume here that the scaling properties of
the slip are isotropic and used a formulation of the stochas-
tic model similar to equation (1) but generalized over a two-
dimensional lattice -see for instance Peitgen and Saupe
[1988]. Using the estimated parameters of the Cauchy
distribution given above, a 2D lattice of random variables
is generated. (To be accurate, we must add that we used
‘‘truncated’’ Cauchy random variables, that is random
variables with a spectrum of values bounded by the esti-
mated minimum and maximum of X reported in Figure 3.)
This set of variables is filtered in the Fourier space to
produce a synthetic slip distribution (Figure 4) with the
power spectrum corresponding to the original data. The
same procedure is repeated but for a 2D lattice of Gaussian
random variables generated with the parameters of the
Gaussian curve presented in Figure 3. The synthetic slip
based on a Gaussian distribution is illustrated in Figure 4.
The two figures should be compared to the original slip
distribution presented in Figure 1. In particular, note that the
range of slip in Figure 4 (bottom graphic) is narrower than
the range of values displayed in Figures 1 and 4 (top
graphic). A stochastic model based on a Gaussian distribu-
tion that fits the PDF given in Figure 3 cannot generate the
‘‘extreme’’ slip events observed in the original slip distri-
bution with amplitude close to 2 m, as observed in the
original slip distribution. Asperities are usually defined as
regions with large slip values on the fault, and the area
occupied by asperities is related to the seismic moment
through a power law [see Somerville et al., 1999]. Madar-
iaga [1979] derived a relationship between the seismic
moment and a general heterogeneous stress drop distribu-
tion and the geometry of the fault. The numerical simula-
tions indicate that a proper quantification of the slip
underlying random variables is fundamental for a better
understanding and description of the statistical properties

and long-range spatial correlation of asperities as well as the
evaluation of the seismic moment based on the asperity or
prestress spatial distribution.
[11] Although still an oddity in seismology, observations

of a non-Gaussian distribution have been reported in the
literature. For instance, the analysis of the statistical proper-
ties of strong ground motion recorded in the epicentral areas
of large earthquake have shown that the peak acceleration
distribution is non-Gaussian [Gusev, 1996], characterized
by ‘‘heavy tailed’’ distribution (a typical signature of Lévy
distribution as illustrated in Figure 3) and are better
approximated by Cauchy distribution (with a = 1) [Tumar-

Figure 3. In the top graphic, the computed PDF of X (red
and blue dots and bars) is compared to the Lévy PDF, (green
curve), the Cauchy PDF (black curve) and the Gaussian
PDF (dashed curve) that best fit the PDF of X—the slip
amplitude. The left tail is red while the right tail is in blue
with X corresponding to the magnitude of the random
variables. The increment �X used to compute the PDF—
and corresponding to the width of the bar—is set to 2.5. The
bottom graphic provides the same information but on a log-
log plot. The Lévy and Cauchy probability density functions
are characterized by a tail that drops according to a power
law that is best illustrated on a log-log plot. The Gaussian
PDF fails to reproduce the functional behavior of the
computed PDF. According to the Gaussian PDF, the large
slip events have almost a zero probability of being
observed. The consequences and predictions associated
with the asymptotic behavior of Gaussian and non-Gaussian
distributions are discussed in the text and illustrated in
Figure 4. The results presented in these graphics are not
significantly modified when the PDF is computed with the
increment �X = 1.25.
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kin and Archuleta, 1997]. This suggests that observation of
non-Gaussian distribution in the strong ground motion
records may have its origin in the spatial distribution of
slip over the fault surface. Using a multiasperity fault
model, Gusev [1989] has postulated that local stress drop
values will be governed by Lévy distribution.

4. Conclusion

[12] In this paper, we investigated the spatial variability
of the slip distribution of the 1979 Imperial Valley earth-
quake. We have shown that interpolation of the slip spatial
distribution—a common procedure in numerical computa-
tion of rupture propagation—introduces spurious long-
range spatial correlations. We also proposed a stochastic
model—based on non-Gaussian distribution—that reprodu-
ces the main features of the slip spatial variability, including
the presence of large values of slip. These results suggest
that the heterogeneous spatial slip distribution of Imperial
Valley is one realization of a stochastic model. This implies
that by describing the statistical properties of earthquakes

we can lay the foundation for equivalent scenario earth-
quakes. This will allow computation of ground motion for a
range of earthquakes all of which will have the same
inherent statistical properties.
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Figure 4. In the top graphic, the synthetic slip is generated
using the two-dimensional fields of filtered Cauchy random
variables. In term of spatial variability, the synthetic field
compares well with the original data illustrated in Figure 1
except for regions close to the surface. In the bottom
graphic, the synthetic slip is generated using the two-
dimensional fields of filtered Gaussian random variables.
Note that the inter-variability of the synthetic slip based on a
Gaussian description fails to reproduce the variability
observed in the original data (Figure 1). It should be noted
also that choosing a realization with a weak slip distribution
near the top is just a convenient choice to enhance the
similarity with Figure 1. The stochastic model doesn’t
differentiate between this realization and the same realiza-
tion rotated by 180�.
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