10. Siliciclastic Marine Environments
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Schematic cross-sectional

profile of the marine envi-
ronment. Not to scale.



10. Siliciclastic Marine Environments

10.1 Introduction
10.2 The Shelf Environment
* Physiography and depositional setting
« Shelf sediment transport and deposition
 Wave- and storm-dominated shelves
Fair-weather waves
Swells, storm waves, and wind-forced currents
Sediment plumes
Nepheloid (& &) flows
Sediment characteristics of storm-dominated shelves
* Tide-dominated shelves
Tidal processes
Sediments of tide-dominated shelves
« Shelves affected by intruding ocean currents
» Ancient siliciclastic shelf sediments



10.3 The Oceanic (deep-water) Environment

» Depositional setting
Continental slope
Continental rise and deep ocean basin

 Transport and depositional processes to and

within deep water
Sediment plumes, wind transport, ice rafting, nepheloid transport
Currents in canyons
Contour currents
Pelagic rain
Explosive volcanism

Turbidity currents and other mass-transport processes

* Principle kinds of modern deep-sea sediments
Terrigenous sediments
hemipelagic muds
turbidites
contourites
glacial-marine sediments
slump and slide deposits
Pelagic sediments
Chemical sediments

* Ancient deep-sea sediments



Physiography and depositional setting
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Schematic diagram illustrat- P
ing the difference between

pericontinental (continental

shelf) and epicontinental

shallow-marine environ-

ments. [After Heckel. P. H..
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The Gulf of Mexico is an excellent example of a submerged continental margin, or pericontinental clastic shelf.
Shelves of this kind are the most common today. The continental shelf extends from just seaward of the
shoreline to the shelf margin, which lies just landward of the 200 m contour indicated. The rugose topography of

the continental slope in this area is the result of extensive salt tectonics. .
Posamentier & Walker (2006)
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The Arafura Sea between Australia and Papua New Guinea—Irian Jaya is a good modern example of an epicontinental sea. A

shelf margin does exist eastward of the Fly Delta and the York Peninsula, but westward a broad, submerged continental
platform extends some 1000 km to the Indonesian island arc.

Posamentier & Walker (2006)
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Figure 10.4

Various kinds of structural
barriers that form the sea-
ward margins of continenta
shelves. [After Hedberg, H.



Shelf sediment transport and deposition
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Schematic representation of
the major physical processes
that operate on the shelf to
transport sediment. Based on
Nittrouer and Wright, 1994;
Swift et al., 1986; Swift and
Thorne, 1991; and Vincent,
1986.



Physical and
Biologic Mixing
of Sediment Column

e.

Steep Gradients
In Cross-Shelf Sediment Flux

Inner Shelf Mid Shelf

Block diagram illustrating the major physical processes influencing
sediment transport and deposition on clastic shelves
(redrawn from Nittrouer and Wright, 1994.)

Posamentier & Walker (2006)
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NASA MODIS satellite image , 1 March 2001, of the Mississippi delta and surrounding
areas, northern Gulf of Mexico. Buoyant or hypopycnal sediment plumes issue from
the deltaic distributaries in both the Balize and Atchafalaya complexes, as well as from

several estuaries (e.g., Mobile Bay) along the coast. Posamentier & Walker (2006)
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The dynamics of continental shelves can be quite complicated, owing to the
interaction of the various components of the current field shown above.
Ordinarily a given shelf is dominated by one process or another. All of the
currents illustrated above combine with the Coriolis force caused by the earth’s
rotation to form geostrophic “balance of forces” currents

Posamentier & Walker (2006)
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Distribution of surficial sediments on the Louisiana continental shelf of the northern Gulf of Mexico. Ship, Trinity, and the “Outer”
Shoal are shelf sand bodies related to the transgression of abandoned Maringouin and LaFourche complexes of the Holocene
Mississippi. East of the modern Mississippi Delta is another area of shelf sands, related to the transgression of the abandoned St.
Bernard complex of the Mississippi Delta. The Southwest Louisiana shelf sands, and their extension into the waters off of East Texas,
resulted from transgression of Pleistocene shoreline and coastal-plain deposits during the Holocene sea-level.

Posamentier & Walker (2006)
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Generation of shallow marine sandbodies by fluctuations in sea level . A) Wavedominated shorelines form as part of a
highstand systems tract (sea level I). Subsequent fall in base level causes “forced regression,” forming a series of
shoreface deposits at successively seaward positions (vertical profiles 2-3), creating “falling stage” and lowstand (profiles
4-6) systems tracts (Sea levels II-VII). At lowstand, a prograding shoreface is reestablished (sea level VIl). B) Rising base
level submerges the exposed coastal plain, expanding the continental shelf. Lowstand and falling-stage deposits are
submerged and reworked by shoreface processes. The “ravinement surface” caused by shoreface erosion truncates
underlying deposits (vertical profiles 7—12). In places, the transgressive erosion surface can be recognized only by an
erosional surface overlain by a thin (centimeter scale) transgressive lag (e.g., thin pebble layer; vertical profile 9). Although
not illustrated in this diagram, marine processes, including waves, tides, and currents, continue to rework the shoreline
deposits into shelf sand bodies, as will be developed further in this chapter. Given sufficient sediment supply, shelf muds

bury the earlier sand deposits. Posamentier & Walker (2006)
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FIG. 43.—A) Dip-oriented and B) strike-oriented views showing bedding geometry
of a top-truncated lowstand delta, based on shallow seismic profiles off the
Natashquan River, Gulf of St. Lawrence, Canada (after Hart and Long, 1996). Note
reworked sediments on top of deltas.

HART, B.S., AND LONG, B.F., 1996, Forced regressions and lowstand deltas: Holocene Canadian examples: Journal of
Sedimentary Research, v. 66, p. 820-829.
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Depositional model for accumulation of fluid muds in the shoreface and inner continental. Fluid mud is supplied to the
nearshore zone by deltaic and estuarine sources in the form of hypopycnal plumes. Such plumes may reach well out onto
the shelf or across the shelf break, depending on their own characteristics, slope of the shelf, and the prevailing shelf
winds, waves, and currents. Sediments are deposited as the plume loses momentum into the receiving basin. Individual
grains settle out as turbulence decreases, abetted by the process of flocculation. The overall deposit shows oblique to
alongshore progradational architecture. Excellent examples of these deposits occur along the coast of northern South
America (on which this diagram was based), sourced largely from the Amazon and Orinoco Rivers, and the western
coastline of Louisiana, USA, the Chenier.

Posamentier & Walker (2006)



Types of hyperpycnal flows now recognized from river-mouth discharges. A) Autosuspended hyperpycnal plumes, with
suspension produced by turbulence within the flow— i.e., a “normal” turbidity current. Gravity and turbulence maintain the flow
until frictional drag or a decreasing gradient result in deposition. These are believed to be relatively rare on continental shelves
because relatively steep gradients are required to produce and maintain the flow. B) Wave—current enhanced gravity flow, in
which the turbulence associated with waves and/ or currents, abundant sediment supply, and a gradient above 0.03 degrees
can produce a gravity flow, creating downslope transport and broad distribution of sediments across a shelf. Deposition results

when frictional drag, lowered gradient, and/or decreasing wave—current turbulence decelerate the flow (redrawn from Bentley,
2003).



Wave- and storm-dominated shelves

Figure 10.6

Behavior of oscillatory waves in shoaling water. (a) Flatten-

ing of orbits as waves enter water shallower than about

one-half wave length. (b) Time-velocity record of bottom

flow during passage of a shoaling wave. The landward

stroke as the crest passes has higher velocity and moves
Grain movement more sediment than does the return stroke associated with
the passage of the trough. [After Swift, D. |. P, and |. A.
Thorne, 1991, Sedimentation on continental margins, I: a
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Figure 10.7
Schematic comparison of
idealized coarse-grained

storm beds and fine-grained

hummocky cross-stratified
beds on storm-dominated
shelves. The lengths of the
current vectors are propor-
tional to the strength of the
current in a given direction
rather than duration. [From
Cheel, R. |., and D. A. Leck-
ie, 1992, Coarse-grained
storm beds of the Upper
Cretaceous Chungo Mem-
ber (Wapiabi Formation),
southern Alberta, Canada:
Jour. Sed. Petrology, v. 62,
Fig. 14, p. 943, reproduced
by permission of Society of
Economic Paleontologists
and Mineralogists, Tulsa,
Okla.]
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Tide-dominated shelves

Figure 10.8

|dealized sequence of bedforms devel-
oped along a sediment transport path
on a tide-dominated shelf. Maximum
spring-tide current velocities associated
with each bedform type are shown
along the edges of the diagram. Sand
ridges may form in the dune belt if suffi-
cient sand is present. [After Belderson, R.




Figure 10.9

Sediment transport by the Agulhas Current off . .
the southeastern tip of Africa. Sand in the current- | SNelves affected by intruding ocean currents

controlled central shelf (B) migrates under the

influence of the Agulhas Current; sand-wave A

fields are up to 20 km long and 10 km wide, and B c
individual sand waves are up to 17 m high. Black 120

streaks indicate sand ribbons. The stippled pat- D ﬁ
tern indicates coarse lag deposits in the sand-de- 0@% 60 7

pleted outer shelf (C). The nearshore sediment S
wedge (A) is dominated by wave processes.

Water depth (m)

scale of
distortion



Ancient siliciclastic shelf sediments

A B C
Transgressive Tide- Transgressive Storm- Regressive Storm-
Dominated Shelf Dominated Shelf Dominated Shelf

Bioturbated
silts and muds

Herringbone cross-
stratified sands

Reactivation surfaces

Large-scale cross-
stratified sands

50:4.1] Lag gravels and sands

Figure 10.10
Idealized diagrams mustrat-
ing typical fining-upward
transgressive shelf succes-
sions on (A) a tide-dominat-
ed shelf and (B) a
storm-dominated shelf, and
a coarsening-upward re-
gressive shelf succession (C)
on a storm-dominated shelf.
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Sunkay Member Sandstone

Tidal Sand Sheet
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Figure 10.11

Vertical succession of sandy
tidal shelf deposits in the
Sunkay Sandstone Member of
the Lower Cretaceous Alberta
Group, southern Alberta,
Canada. Symbols in the grain-
size scale are gvl = gravel,

cs = coarse sand,

ms = medium sand,

fs = fine sand, and m = mud
(silt-clay). [After Banerjee, |.,



Depositional setting
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e o
Continental Shelf | width | Continental Rise :
Average width 75 km | 12\',1 gl?) k;" | Width 0 -600 km | Slope
Average slope 1.7 m/km (0.1°) : 70’ m/lfm : Slope 1 - 10 m/km (0.05 - 0.6°) | 1 m/km
| (49 | Sea Level : 0.057

Figure 10.12

Principal elements of the
continental margin. [After
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gin. [From Boggs, S., Jr., 1984,
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Figure 10.14

The various kinds of processes that operate in
the deep sea to transport and deposit sedi-

ments. [After Stow. D. A. V.. 1994. Deen sea
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Sediment transport agents and products
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Figure 10.15

CURRENT

Schematic representation of principal processes responsible for transport and deposition
of sediments to the deep ocean. Note that most of the processes deposit fine sediment;
however, glacial (floating ice), turbidity current, and resedimentation processes can move
both coarse and fine sediment. Chemogenic refers to minor processes that are largely
chemical in nature. [After Stow, D. A. V., H. G. Reading, and |. D. Collinson. 1996. Deep



Terrigenous siliciclastic deposits

Hemipelagic mud—mixtures of terrigenous mud and biogenic remains; deposited from
nepheloid plumes and by suspension settling and pelagic rain-out

Turbidites—graded gravel/sand /mud; deposited by turbidity currents

Contourites—sandy or muddy sediments deposited and/or reworked by contour cur-
rents

Glacial-marine sediments—Gravel, sand, and mud deposited by ice rafting

Slump and slide deposits—Terrigenous or pelagic deposits emplaced downslope by
mass-wasting processes

Pelagic deposits

Pelagic clay— >2/3 siliciclastic clay; deposited by suspension settling and authigenic for-
mation of clay minerals

Oozes— >2/3 planktonic biogenic remains; deposited by pelagic rain-out
Calcareous—dominantly C4COj3; biogenic remains

Siliceous—dominantly SiO, biogenic remains

Allochthonous deep-sea carbonates

Shallow-water carbonates emplaced downslope by storms or sediment gravity flows
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raded volcaniclastic tur-

idite with Bouma divi-
sions marked, from an
Ocean Drilling Program
(ODP) Leg 127 core of
Miocene sediments in the
Japan Sea back-arc basin.
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Figure 10.22 |
Rhythmically bedded turbidites in the Canning Formation (early Tertiary), Arctic National
Wildlife Refuge, Alaska. Note the large, low- angle truncatton in the mlddle of the outcrop s
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Coarse-grained Turbidites
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Figure 10.20

Contourites

Composite contourite facies model showing grain-

size variations and sedimentary structures through a

mud-silt-sand contourite succession. [From Stow
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suhantaretic
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Leg 29 of the

Deep Sea Drilling Project
(Initial Reporis of the DSDP)
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types of deep-sea sediments

in the modern ocean. [From
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Pelagic Sediments
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Pelagic Sediments

Structureless limestone

Regular-bedded
+ distinct
thin-thick

| + dissolution

Irregular-bedded
wavy-lenticular

clay dissolution seams
+ Fe Mn nodules

Regular-irregular
bedded + hardgrounds
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+ Fe Mn nodules

+ Phosphate crusts
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highly irregular
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+ boring
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Calcareous Microfossils

e S

O
BET W a e\



Siliceous Microfossils =2 Chert

B = oy
s p R =

ool
*‘:.(4“.‘1?-3‘”":




in R

L

T

“a.

o o\ )
AL g
S, § &mv‘ -
5 4 o >
¥ = o e
3 ® ™

Ml

\,_.

an

=




Siliceous Microfossils




Deep Sea Fan Depositional
Sa¥stems

Form in the moderate to deep ocean, down-dip of
submarine canyons and often deltas

Large sediment flux, high sedimentation rate,
large area

Gravity flow transport and deposition
— turbidity currents

— subaqueous debris flows

— suspension fall-out

Lobes and lobe-switching important
Both coarse and fine grained sediment
Often well-sorted and normally graded




Characteristics of Deepwater
Systems

Sediments fine upward from marine fans
Sand bodies form lobes perpendicular to basin margin
Formed by a mix of fluvial input, and turbidite currents

Facies

— Subdivided erosion surfaces formed during
« Migrating fan lobe fill

» Dropping in base level
— Local channels

» Rising in base level
— Poor to well sorted litharenites common
— Sedimentary structures
* Fining upward cycles that coarsen up as depo-center of lobes migrate
» Up dip channel cut and fill
» Gently seaward dipping thin parallel lobate sheets
— Geometries
« Confined incised channels
* Open lobate sheets perpendicular and occasionally parallel to shore
— Fauna & flora
» Restricted Marine fauna often in over bank shales



Submarine Canyons




Submarine Canyons and Deep
Sea Fans




Submarine
Fan Types

Type I: Channels with detached lohes
£ Sediment bypass zone |

Slope failure
Channels
Lobes
Type li: Channels with attached lobes
3
Channels

Type lil: Channel-levee complex without lobes

—~.Basinal mudstone

Channel-levee complex Approx. 20 km
—————t




Figure 10.18
Depositional model for a point-
source gravel-rich submarine fan.
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Figure 10.16

Depositional model for a point-source sand-rich submarine fan.
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Figure 10.19
Depositional model for a

point-source mud/sand-rich
submarine fan. [From Read-
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Deep Water Fan Deposits

Slope-apron deposits Deep-water fan deposits Basin plain deposits
Upper slope Upper fan
Slump scars
- Changel fills; Fine/very fine
Lower slope including |
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Deep Water Fan
Deposits
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Submarine Channels

@ Order of bounding surface Debris flow

&= Lhdg;?ggged sandstone- Conglomerate
Thick-bedded sandstone
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Deep-water Plio-Pleistocene channel system
In the eastern Gulf of Mexico

A. Coherenceisa "=
volume attribute
that emphasizes
the correlation of
seismic traces.

B. Light color:
seismic traces
correlate

Dark color: lack of
correlation of
seismic traces

C. Coherence
highlights seismic
edges: i.e., edge of
depositional
elements.

° A, B: successive position of the
channel thalweg and episodes of slice of A, B.

Catuneanu (2006) channel avulsion.
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