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ABSTRACT

This paper presents a gravity inversion method for
determining the volumes of bodies with pre-established
density contrasts. The method works step-by-step on a
prismatic partition of the subsurface volume, expanding
the anomalous bodies to fit the observed gravity values in
a systematic exploration of model possibilities. The pro-
cess is treated in a 3-D context; at the same time, it can de-
termine a simple regional trend. Moreover, positive and
negative density contrasts are simultaneously accepted.
The solution is obtained by a double condition: (1) the
�2-fitness to the observed gravity data (model fitness) and
(2) the minimization of the total (weighted) anomalous
mass (model smoothness). A positive parameter is used
to balance the two minimization terms. The method is
applied to a simulated example and also to a real exam-
ple: the volcanic island of Gran Canaria (Canary Islands,
Spain). In both cases, the results obtained show the pos-
sibilities of the method.

INTRODUCTION

The inverse gravimetric problem, namely the determination
of a subsurface mass density distribution corresponding to an
observed gravity anomaly, has an intrinsic nonuniqueness in its
solution (e.g., Al-Chalabi, 1971). Moreover, data must be con-
sidered as insufficient and inaccurate. Nevertheless, particular
solutions can be obtained by including additional information
about the model parameters (subsurface structure) and about
the data parameters (statistical properties of the inexact data,
e.g., Gaussian distribution). The inversion methods vary in ac-
cordance with the amount of information about the subsurface
structure (from very precise geological information to light
mathematical conditions) and, mainly, with the kind of model
parameters selected (geometrical parameters or densities).

For the gravity inversion methods which consider the densi-
ties of the elements of a regular subsoil partition as unknowns
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(with nondiscrete values), the linear approach seems to be
a better choice (e.g., Camacho et al., 1997). In this case, the
solution fits the observed data very well, but its geometrical
properties are somewhat diffuse because of the rather smooth
variation of the resulting anomalous densities. Otherwise, the
methods which look for the geometrical properties of anoma-
lous bodies with fixed density contrast (e.g., Pedersen, 1979;
Barbosa et al., 1997) correspond to a nonlinear context
and offer interesting results, limited to the validity of the
hypothesis used.

Generally, the usual inversion methods look for analytical
solutions by means of linear approaches or iterative meth-
ods for linearizable problems. Unfortunately, linearized tech-
niques depend strongly on the accuracy of initial estimates of
the model parameters (Rothman, 1985). For the fully nonlinear
treatment, the methods of exploration of the model space often
give the best option (Tarantola, 1988). This exploration process
can be conducted randomly (Silva and Hohmann, 1983) or sys-
tematically.

We present an inversion method that can be included in this
last group of systematic exploration. A strong hypothesis is
adopted: the subsurface anomalous structure is characterized
by prescribed mass density contrasts. Therefore, the problem
consists of determining the geometry of the anomalous vol-
umes corresponding to those density contrasts. For that, the
subsurface volume is divided into a fixed discrete 3-D partition
of prismatic elements, and the anomalous volumes are con-
structed by means of an “expansion approach.” In this sense,
our proposal is related to the “bubbling” method of Zidarov
(1990) and the “open-reject-fill” method of René (1986).

As opposed to Zidarov’s (1990) approach, in our approach
step-by-step, prismatic elements are selected by means of sys-
tematic testing of each possibilities of model growth, and added
to the existing elements. In his paper, René (1986) devel-
oped a 2-D expansion approach by using a “maternal” struc-
ture formed by square “seeds” that grow by incorporating
only contiguous elements. The René method does not require
additional hypotheses but uses only positive (or only neg-
ative) density contrasts, and models with both positive and
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negative anomalies are not possible. To relax these limitations,
we present an approach with the following new features: (1)
we suppose a 3-D context, (2) nongridded nonplanar inaccu-
rate data are accepted, (3) a “maternal” structure is not re-
quired, (4) a simple regional trend can also be simultaneously
determined, (5) matter expansion can appear everywhere (not
only for contiguous elements), (6) not requiring “contiguous”
expansion lets us consider nonregular subsoil partitions (e.g.,
with deeper blocks bigger than shallow blocks), (7) if previous
qualified models exist, they can be incorporated and, above all,
(8) positive and negative density contrasts are simultaneously
accepted. The last two improvements are obtained by means
of an additional condition to the model.

INVERSION METHOD

Let us consider n gravity stations Pi (xi , yi , zi ), i = 1, . . . , n,
not necessarily gridded, located on a rugged topography and
with observed anomalous gravity values gi . We suppose a
Gaussian distribution for the observation uncertainties given
by a covariance matrix QD (as deduced from a data analy-
sis). The subsurface volume close to the survey area is broken
down into a discrete 3-D partition ofm prismatic elements. The
size and resolution of this partition are related to the gravity
stations distribution (diameter and step) and, also, are condi-
tioned by the capacity of the computer. The gravity attraction,
Ai j , at the ith station Pi (xi , yi , zi ), due to the jth prism, for unit
density, is given by Pick et al. (1973):

Ai j = −G
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where G is the gravitation constant, the edges of the jth prism
are parallel to the reference axes, and the limiting coordinates
for its volume are u j
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2 for the z coordinate. The matrix, A,

with components Ai j , is the design matrix of the physical con-
figuration of the problem and contains the effect of the rugged
terrain, the station distribution, subsoil partition, etc.

We look for a gravity inversion using a step-by-step matter
expansion approach based on a systematic exploration of the
growth possibilities upon a prismatic partition. First, if previous
information about the model structure is known (which is not
necessary), it can be initially incorporated. We suppose this in-
formation to be expressed as initial values ρ0

j , j = 1, . . . ,m, for
the prism densities and a corresponding covariance matrix QM

corresponding to the previous model confidence (Tarantola,
1988). For a problem without previous information about the
model structure, we can adopt ρ0

j , j = 1, . . . ,m, and take a
model covariance matrix QM given by a diagonal normalizing
matrix of nonnull elements that are the same as the diagonal
elements of ATQ−1

D A. The elements of this matrix can be used
also to limit the whole subsurface volume to study, bounding
the accepted model uncertainty. The gravity values calculated

for this initial density structure at points Pi , i = 1, . . . , n, are

g0
i =

m∑
j=1

Ai jρ
0
j .

After a step-by-step approach, the final model, ρ j , j =
1, . . . ,m, will be obtained by adding to the initial values ρ0

j

an additional density contrast �ρ j . These incremental values
are constrained by a strong hypothesis: the adjusted anomalous
density contrast �ρ j of the prismatic elements which are mod-
ified can have only two local values—a previously prescribed
positive value (“increased” prisms) or a previously prescribed
negative value (“decreased” prisms). For the “unchanged”
prisms, we can suppose a null value for the corresponding �ρ j .
Here, we note that the prescribed incremental values (positive
and/or negative) can be fixed with different values for differ-
ent regions of the tested subsurface volume (local values). This
hypothesis gives us a model of unchanged/increased/decreased
prisms which fits the observed anomalies and which gives us
interesting geometrical information (to the extent that the ini-
tial hypothesis is valid). The method works step-by-step by
modifying the densities of the prisms (with positive or nega-
tive prescribed values) so that the modeled gravity anomalies
fit (with a scale factor f ≥ 1) the observed gravity anomalies.
The anomalous mass grows (by means of increasing volume)
while its corresponding gravity field remains proportional to
the observed one. Moreover, a simple (e.g., linear) regional
trend can be simultaneously adjusted. This process is shown
below by means of an arbitrary step of the growth approach.

For an arbitrary (k+ 1)th step, k prisms have been defini-
tively modified (with the positive or negative fixed additional
values) and the modeled gravity values will be

gci = g0
i +

�k∑
j=�1

Ai j�ρ j ,

where j = �1, . . . , �k are the indexes corresponding to the pre-
viously modified prisms with densities ρ0

j + �ρ j . Now, we look
for one new prism to modify throughout the m–k unchanged
prisms. For the jth unchanged prism, j �= �1, . . . , �k , the follow-
ing equation system can be considered:

gi − (
gci + Ai j�ρ j

)
f − (p0 + px(xi − xM)

+ py(yi − yM)) = vi , i = 1, . . . , n, (1)

where xi , yi are the planar coordinates of the ith station; xM , yM
are the coordinates of an arbitrary central point for the survey
(for example, mean coordinates); f ≥ 1 is an unknown scale
factor for fitting the “actual” model anomalies (gci + Ai j�ρ j )
to the observed ones, gi ; and, p0, px , py are three unknown
values which adjust a regional trend (a 1-degree polynomial
surface, for simplicity of the further formulation). The positive
and the negative prescribed values are successively tested for
the additional density contrast �ρ j as follows.

The acceptation of positive and negative values and the inclu-
sion of the trend unknowns give us a nonuniqueness problem if
only a minimization criterion for the residuals is used. To solve
that, an additional condition of model variation minimization
can be used. Then, the unknown parameters f , p0, px , py are
adjusted for a mixed minimization criteria as

vTQ−1
D v + λ f 2mTQ−1

M m = min., (2)
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where v = (v1, . . . , vn)T (T for transposed) as defined by equa-
tion (1), λ is a positive factor fixed (see below) for balance
between model fitness and model smoothness, and

m = (
�ρ�1 , . . . , �ρ�k , �ρ j

)T
.

The first term of the minimization functional (2) corresponds
to the fit residues weighted with the data quality matrix. The
second term is a weighted addition of the model densities. Nev-
ertheless, taking into account the fact that the covariance ma-
trix Q−1

M contain the prism volumes as factors, this second term
is connected with the anomalous mass of the model.

The solutions of the equation system (1) and (2) can be cal-
culated for the adopted prism and �ρ j as

f = (srg − p0sru − pxsrx − pysry)/(srr + λsmm),

p0 = (Fug − px Fux − py Fuy)/Fuu,

px = (Gxg − pyGxy)/Gxx ,

py = (GxxGyg − GxyGxg)/(GyyGxx − GxyGxy),

where the subscripts r , g, u, x , and y refer to the n-vectors r, g,
u, x, and y with the following ith components:

(x)i = xi − xM , (y)i = yi − yM , (u)i = 1,

(r)i = gci + Ai j�ρ j , (g)i = gi ,

and where smm = mTQ−1
M m, and the coefficients srg , sru , srx , sry ,

srr , smm , Fug , Fux , Fuy , Fuu ,Gxg ,Gxy ,Gxx ,Gyg , andGyy are calcu-
lated with the subsequent expressions, replacing the subscripts
a and b by the corresponding pairs of subscripts r , g, u, x , y:

sab = aTQ−1
D b, Fab = sab(srr + λsmm) − sar sbr ,

Gab = Fuu Fab − FuaFub.

Once the former linear equations have been solved, we can
calculate the corresponding vi values in function of the selected
�ρ j . Then, we take the value e2

j defined by

e2
j = vTQ−1

D v + λ f 2mTQ−1
M m

as the parameter for the suitability of jth prism and the den-
sity possibility (negative or positive) adopted. So, in this kth
step, the method tests each of the unchanged prisms and both
(negative and positive) density contrast possibilities. Then, the
jth prism and selected density (positive and negative) which
produce a minimum value of e2

j , which we will call E(k), are
definitively selected to increase the model, adding their effect
to the model values gci .

This process is successively repeated. For the successive
steps, the scale value f decreases and the trend parameters
p0, px , py reach nearly stable values. The process stops when
f approaches 1, resulting in some anomalous volumes and a
final regional trend.

The λ parameter governs the application of the minimiza-
tion conditions for the total anomalous mass and for the resid-
ual values. For low λ values, a better fit is obtained, but the
anomalous mass may increase excessively (by means of vol-
ume increment) and become deformed, adopting a too deep
position. For high λ values, the adjusted model can be too light
and shallow.

On other hand, we observe that, through the model growth,
the successive E(k) values decrease continuously. But, for f
values very close to 1, and especially for low λ values, the E
values can increase, giving rise to an inadequate mass increase
(obtained with deep alternatively negative and positive near
prisms). To avoid this effect, we impose an additional condition
about the increased/decreased prism selection: for every step
of the model growth, the E value must be less than for the
former step. This condition gives rise to minimum weighted
mass models.

By adopting this last additional condition, we can establish
a criterion for determination of the optimal λ value: we select,
among the different λ values corresponding to minimum mass
models, the λ value which produces a model with maximum
total anomalous mass (see simulation example). According to
equation (2), this criterion roughly corresponds to diminishing
the residual gravity values v. In fact, for higher λ values, the fit
is rather poor, and the adjusted model is rather small and shal-
low, whereas for lower λ values, the last additional condition
prevents an inadequate mass increase, and the growth process
stops prematurely (see Figure 1).

SIMULATION TEST RESULTS AND REAL
DATA APPLICATION

Figure 2 displays a simple simulation example. We consider a
simple test model formed by a “+” body of positive density con-
trast 0.5 g/cm3 and south-north orientation, near a “−” body of
negative density contrast −0.4 g/cm3 and west-east orientation.
The size of the “−” body is 1100 × 500 × 400 m (x , y, and z coor-
dinates, respectively), and the depth of its mass center is 328 m.
The “+” body has similar dimensions and a mean depth of 528 m
(Figure 2). The anomalous gravity field is complemented by
an arbitrary regional trend as p0 + (x − xM) px + (y− yM) py ,
where p0 = 25.00 mGal, px = 0.40 mGal/km, and py =
−0.80 mGal/km. A nonplanar regular distribution (stepped
100 m and with a approximate side of 3 km) of simulated sta-
tions is adopted. The maximum and minimum heights of the
gravity stations are 272 m and 66 m, respectively. The simulated
gravity anomaly has the simple appearance shown in Figure 3.

FIG. 1. Location of the optimum λ value as the value of the
greatest anomalous mass. For experiments with a lower λ value,
the growth process aborts prematurely, giving rise to an unde-
veloped model; for experiments with a higher λ value, a smaller
anomalous mass is obtained.
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Moreover, we suppose the same accuracy for all of the gravity
data.

We consider a volume under the survey area, reaching a
maximum depth of 1200 m, and we break it down into prisms
with 100-m sides. An empty initial model is considered, namely,
the case of no particular previous information. Then, we di-
rectly apply the aforementioned method to look for a regional
trend and an adjusted anomalous volume for a prescribed
density contrast of 0.5 g/cm3 and −0.4 g/cm3 everywhere.
Through the matter expansion, the unknown parameters p0,
px , py , and f show the evolution displayed in Figure 4. The
final solution obtained gives a regional trend with the pa-
rameters p0 = 25.06 mGal, px = 0.43 mGal/km, and py = −0.77
mGal/km. Figure 5 shows the adjusted anomalous volumes,
which result in a gravity adjustment with a root-mean-square
error of 0.021 mGal.

FIG. 2. Perspective of the simulation model formed by a
south-north body (“+”) of positive density contrast 0.5 g/cm3

close to a west-east body (“−”) of negative density contrast
−0.4 g/cm3.

FIG. 3. Simulated gravity field of the model represented by Fig-
ure 2 plus a simulated linear regional trend. Contour interval
of 0.5 mGal.

The morphology of the solution differs slightly from the sup-
posed simulation model. Indeed, the additional condition of
minimum anomalous mass, combined with the condition of
minimum residual, gives rise to models which, for a level of
fitness, look for compact volumes. So, the crossing region of
the “+” body is thicker whereas the horizontal arms of the “+”
body are thin and the downward arm is flat. Moreover, the ef-
fect of a small part of the anomalous masses (especially for the
deepest region) is modeled by modifying the regional trend,
with an anomalous mass economy. Nevertheless, the position

FIG. 4. Evolution of the fit parameter E and the unknown pa-
rameters p0, px , py , and f through the step-by-step process.
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and general aspect of the solution is similar to the simulation
model, showing the method is efficient.

To show the applicability of this method, we now consider a
real example of a small survey on a volcanic island. The Canary
Islands archipelago is located between 27◦ 27′ and 29◦ 24′ north
latitude and 18◦ 10′ and 13◦ 37′ west longitude, close to the
African passive continental margin. This group of volcanic is-
lands consist of seven main islands and several islets.

Gran Canaria is in the center of the archipelago and is the
third largest island in surface area (1540 km2). It is formed
by an almost conic volcanic edifice, covered by a network of
ravines. More than the 75% of the total volume of the island
was formed some 13–14 million years ago by the rapid extrusion
of enormous amounts of basalts from fissural eruptions, proba-
bly making a flat-topped edifice (Araña and Carracedo, 1978).
Nevertheless, eruptions have continued until recent times, in-
cluding several episodes of explosive volcanism with the erup-
tion of large-volume pyroclastic material associated with the
formation of collapse calderas (Perez-Torrado et al., 1997). The
subaerial evolution of the Gran Canaria volcanism can be di-
vided into three main magmatic episodes (Anguita et al., 1991):
first (14.5–8.5 Ma), buildup of a basaltic shield volcano proba-
bly located off the west coast and that led to a collapse caldera
15–20 km in diameter (Tejera caldera); second (5.5–2.7 Ma), the
Roque Nublo cycle of eruption of materials apparently from
a central vent near the center of the present island; and third
(2.9 Ma to present), eruptions from small vents on the center
and the northeast of the island.

Bosshard and MacFarlane (1970) performed a gravity study
for the Western Canary Islands. They analyzed the characteris-
tic positive anomaly of the main islands supposing a basement
consisting of upwarped blocks. High-density bodies appear to
rise from the elevated basement as volcanic plugs. For Gran
Canaria, they interpreted a northwest-southeast characteristic
profile of the Bouguer anomaly: a basement material with den-
sity 3.1 g/cm3 appears elevated from a level of 10 000 m depth
to a top of 3000 m depth as a double plug, covered by three
crustal layers of densities 2.7, 2.6, and 2.3 g/cm3.

We consider here a gravity survey composed of 81 stations
observed by the Spanish Geographical Institute, plus 17 sta-
tions observed by our own institution (Figure 6). Once the ob-
servations had been reduced and homogenized (to the IGSN71

FIG. 5. Perspective of the anomalous model adjusted by the
described growing method.

standard), we calculated the Bouguer anomaly including a ter-
rain correction that was determined using the terrain model
shown in Figure 7. A value of 2.3 g/cm3, as proposed by
Bosshard and MacFarlane (1970), was used for the terrain and
Bouguer mass correction. Figure 8 shows the map of the ob-
tained Bouguer anomaly.

Taking into account the suspected high observational noise
and the damaging effects of the very rugged topography, we
applied a covariance analysis and a least-squares prediction
(see Moritz, 1980; Camacho et al., 1997) to filter the noise and
to interpolate a continuous anomaly field. Figure 9 shows the
map of the interpolated Bouguer anomaly field; Figure 6 con-
tains a contour map of the anomaly prediction error. Note that
the determined anomaly field has an uncertainty of about 2 or
3 mGal.

Starting from the Bouguer anomaly field model shown in
Figure 9, we directly apply the proposed method of grav-
ity inversion. To do so, a subsurface volume partition with

FIG. 6. Gran Canaria, Canary Islands, location of gravity sta-
tions and map of the Bouguer anomaly prediction error. Axis
coordinates on UTM system (m). The contour of the island is
added in this figure and Figure 7.

FIG. 7. Digital terrain model of Gran Canaria, Canary Islands,
obtained by means of 1:50000 topographic chart digitalization.
The highest elevations correspond to 1918 m.
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parallelepipedic blocks of sides ranging from 1600 m (up
blocks) to 3300 m (down blocks) was adopted. Taking into
account the model densities proposed by Bosshard and
MacFarlane (1970) and after several empirical trials, we se-
lected the values −0.2 g/cm3 and 0.3 g/cm3 as the negative and
positive contrast densities, respectively, for the model. The di-
rect application of the described inversion method allowed us
to obtain a contrast density model shown in Figure 10. More-
over, the inversion approach determined a regional trend (lin-
ear in our case) shown in Figure 11.

This regional component (Figure 11) is the northwest-
southeast trend associated with the main structural direction
for the island. This trend, which is present in other islands of
the archipelago, can be related to the change of the average
crustal thickness and with the neighborhood of the continental
margin.

The adjusted local model of density contrast is shown by
some horizontal sections and vertical profiles (Figure 10). Sev-
eral interesting features can be highlighted:

FIG. 8. Map of the observed Bouguer anomaly. Contour inter-
val: 5 mGal. The white areas correspond to nonobserved zones.

FIG. 9. Map of the Bouguer anomaly model, filtered and inter-
polated by least-squares prediction. Contour interval: 5 mGal.

1) The deep structure (horizontal profile, 17 000-m depth)
may be related to the ancient fissural extrusion of mas-
sive basaltic material that forms the main structure of
the island as a volcanic plug. This high density body has
a northwest-southeast alignment and is divided into two
main structures (northwest and southeast), which are al-
most 3000 m deep at the top, near the areas of the ancient
basaltic series (northwest border and, mainly, the south-
east sector of the island).

2) A local minimum that can be associated to the ancient
multicyclic stratovolcano and which, especially for rather
superficial sections, just breaks the main fissural maxi-
mum, appears near the center of the island. This central
vent, which is similar to the Teide volcano in Tenerife, in-
cluded several episodes of explosive volcanism with the
formation of collapse calderas.

3) Finally, rather linear lateral minima are to be seen in the
adjusted model. These structures, located at shallow and
medium depths, form two lines nearly parallel to the main
northwest-southeast direction along the southwest and
northeast sectors of the island and a third line southwest-
northeast outside the northwest border. We relate these
minima to a filling of light volcanic material in zones of
fissures associated with the block displacements and the
island volume expansion. Some recent volcanism can be
associated with these minimum areas.

CONCLUSIONS

As main advantages of the method, we can point out the
possibility of using positive and negative contrast simultane-
ously, the possibility of simultaneous determination of a sim-
ple regional trend, good geometrical results, the possibility of
incorporating a previous (even inexact) model or working au-
tomatically without previous information, and the acceptance
of inexact data. Nevertheless, as usual for the inverse gravi-
metric problem, the obtained solution must be accepted as a
model (with a tendency to rather smooth shapes) whose va-
lidity is conditioned by the certainty of the adopted hypothe-
sis. Moreover, the obtained model represents a distribution of
anomalous masses up to an arbitrary horizontal stratification.
With these usual restrictions, the proposed inversion method
provides interesting 3-D information about the location, shape,
and relative size of the anomalous masses (of prescribed
density contrast) and in a nearly automatic approach without
subjective contributions.
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