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A large number of probabilistic earthquake occurrence models are currently available for seismic 
hazard assessment. This paper reviews the basic assumptions of the various models, summarizes 
their stochastic representations and discusses the parameters needed for applications. While the 
Poisson model is one of the most commonly used in practice it is limited in its representation of the 
physical earthquake driving mechanism and in its characterization of distinct seismicity patterns. 
From comparisons of the various models, it is observed that while the Poisson model may apply to 
regions characterized by moderate frequent earthquakes, other stochastic representations such as 
the Markov and semi-Markov models describe the sequences of events more adequately at regions 
with large infrequent earthquakes. Regions that have unique seismicity patterns such as clustering 
foreshock-mainshock-aftershock sequences are better represented by other stochastic models. It is 
found, however, that some of these models are difficult to implement and rather restrictive 
primarily because they require a considerable amount of additional data for model parameter 
estimation. 

I N T R O D U C T I O N  

Reliable estimation of the seismic hazard in a region 
requires the prediction of the size, location and 
magnitude of future earthquake events. An incomplete 
understanding of the earthquake phenomenon, however, 
has led to the development of primarily long-term hazard 
assessment tools relying on statistical averages of 
earthquake occurrences without considerations of 
specific patterns. As knowledge of the geophysical 
mechanisms that drive earthquake events has increased, 
so have the corresponding mathematical representations. 
Over the past two decades, numerous probabilistic 
models have been developed to depict various aspects of 
seismic occurrence patterns. The trend has been to 
introduce models that are specific to a particular region or 
fault. Some models reflect an apparent memoryless 
property, while others describe energy release sequences 
that are time and size dependent. Yet other models 
account for clustering, cyclicity, aftershock sequences and 
other patterns in the occurrence data. 

At present, the number of probabilistic earthquake 
occurrence models is so overwhelming that a need exists 
to examine them and to assess their usefulness and 
applicability in various regions. The purpose of this paper 
is to review existing stochastic earthquake occurrence 
models and discuss their application to seismic hazard 
analysis. The underlying geophysical and modelling 
assumptions, the critical parameters and data needed for 
their determination, and the limitations of the various 
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models are summarized and whenever possible critiqued 
for their applicability in regional earthquake hazard 
analyses. There is no simple answer to the question which 
is the best model. Ultimately a great deal of engineering 
judgement is involved in decisions about which models 
provide the best assessment of seismic hazard for a 
particular region. Table 1 provides a summary of the 
earthquake occurence models found in the literature and 
gives a brief comment about unique characteristics of 
each. While an effort is made to include most available 
models, the list is not intended to be comprehensive. 

STOCHASTIC M O D E L  F O RMU LA TIO N S  

The objective in seismic hazard modelling is to obtain 
long term predictions of the occurrences of seismic events. 
Most often the prediction is expressed in the form of 
probabilities of exceedence of a specified earthquake 
magnitude over a period of time t or as the expected 
number of such events. Thus, if N(t) represents the 
number of events in time (0, t) and M defines the size of the 
events, then that probability is expressed as P{N(t)>O 
and M ~> m, (0, t)} and the expected number of events are 
E[N(t) > 0 and M ~> m, (0, t)]. More recently, attention 
has also focused on the time dependence of earthquakes 
and representation of that time dependence. For  example, 
information on seismic gaps, characteristic events, time of 
occurrence and magnitude of the last seismic event can 
play an important role in hazard computations. Thus, the 
probabilities of occurrence of at least one event of size M 
or greater in time (t~, tl + t) given that the last event was of 
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Table 1. Summary q]" occurrence models used in seismic hazard analyses" 

Reference 

POISSON MODELS 

(2) Cornell, 1968 

(3) Cornell and Vanmarke, 1969 

(33) Esteva, 1969 

(4) Milne and Davenport, 1969 

(61) Liu and Fagel, 1972 

(13} Merz and Cornell, 1973a 

(10) Shah et al., 1975 

(5) Der Kiureghian and Ang, 1977 

(6) Douglas and Ryall, 1977 

(29) Mortgat and Shah, 1979 

(7} Blume and Kiremidjian, 1979 

(62) Guagenti and Scirocco, 1980 

{15) Kijko and Sellevoll, 1981 

(8) Mohammadi and Ang, 1982 

(22) Vere-Jones and Ozaki, 1982 

(11) Araya and Der Kiureghian, 1986 

MARKOV MODELS 

(38} Vere-Jones, 1966 

(39) Knopoff, 1971 

(37) Vagliente, 1973 

(40) Veneziano and Cornell, 1974 

Comments 

(42t Lomnitz-Adler, 1983 

SEM1-MARKOV MODEL 

(43) Patwardhan et al., 1980 

(46) Anagnos and Kiremidjian, 1984 

(48) Anagnos and Kiremidjian, 1985 

(47) Guagenti and Molina, 1984 

(68) Cornell and Winterstein, 1986 

RENEWAL MODELS 

(251 Bender, 1984 

(63) Hagiwara, 1974: (64) Rikitake, 1975 

(49) Kameda and Ozaki, 1979 

(51) Savy et al., 1980 

(50) Kameda and Takagi, 1981 

Homogeneous Poisson, point-source model, log-linear magnitude- 
frequency relation, extreme type I distribution for largest annnual event. 

Homogeneous Poisson, point-source model, log-linear magnitude- 
frequency relation with upper limit on magnitude. 

Homogeneous Poisson, point-source model, Bayesian parameters, 
gamma prior and posterior on occurrence rate. 

Homogeneous Poisson, point-source model. Seismic hazard maps for 
Canada developed. 

Homogeneous Poisson earthquake occurrence, stochastic model for 
earthquake ground motion. 

Homogeneous Poisson, point-source model, quadratic magnitude- 
frequency relation, extreme type II distribution for largest annual event. 

Homogeneous Poisson, point-source model, bi-linear magnitude- 
frequency relation. 

Homogeneous Poisson, fault-rupture model. 

Homogeneous Poisson, fault-rupture model. 

Homogeneous Poisson, fault-rupture model, Bayesian parameters. 

Homogeneous Poisson, fault-rupture model, occurrence rate computed 
from fault dislocation and plate boundary activity. 

Homogeneous Poisson, Bayesian updating to include information from 
observed precursors. 

Homogeneous Poisson, triple exponential distribution for largest annual 
event. 

Homogeneous Poisson, fault-rupture model, includes probability of fault 
rupture strike on lifeline link. 

Compound Poisson process, cyclic rate for occurrence of earthquake 
clusters, independent distribution (e.g., geometric) for cluster size. 

Fault-rupture model including directivity effects. 

Continuous-time, continuous-state Markov process, aftershocks 
modelled as sequ~,nce of events of decreasing frequency and magnitude. 

Stationary continuous-time, continuous-state Markov process, models 
stored elastic energy of deformation, main events and aftershocks. 

Two-state Markov chain, states defined as success or failure (occurrence 
or nonoccurrence of earthquake in specified time interval). 

Simulation and Markov Model, temporal and spatial dependence, 
earthquake occurrence when shear stress equals static friction stress, 
stress redistribution causes rupture propagation. 

Simulation of Markov model to give a simplified representation of the 
spatial distribution of earthquakes on adjacent faults. 

Discrete-state semi-Markov process, time between events depends on 
magnitude of previous and next events. 

Semi-Markov model for time predictable earthquake sequences with 
application to characteristic earthquakes in the Parkfield region. 

Discrete-state time-predictable stochastic model with spatial dependence, 
Weibull distributed interarrival times. 

Semi-Markov model for time and slip predictable earthquake sequences. 

Semi-Markov model for combined time and slip predictable model. 

Poisson model with two possible occurrence rates depending upon 
whether fault is in active or inactive cycle. Probabilities of moving from 
active to inactive or vice versa are constant. 
Weibull interarrival times, distribution parameters estimated from strain 
data, magnitude not considered. 

'Double Poisson" renewal model, exponential interarrival times with rate 
7 in (0, to), after t 0, if no earthquake occurs, rate increases to v> 7. 

Weibull interarrival times, fault rupture modelled as series of coherent 
patches. 

Renewal process for major faults combined with nonstationary Poisson 
process for secondary sources, Markov chain for migration between 
major faults. T, hle 1 cont 
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(52) Kiremidjian and Anagnos, 1984 

(65) Grandori et al., 1984 

TRIGGER MODELS 
(55) Vere-Jones and Davies, 1966 

(56) Shlien and Toks6z, 1970 

(57) Merz and Cornell, 1973b 

(66) Lai, 1977 

(58,59,60,67) Kagan and Knopoff, 1976, 1977, 1980, 1984 

Slip-predictable recurrence, Markov renewal model, interarrival times 
Weibull distributed. 
Probability densities of interevent times of aftershocks and longer 
recurrence events are combined to form the overall interarrival time 
distribution for the process. 

Homogeneous Poisson trigger events, decay function describes 
probability of shock occurring in time t after trigger event, magnitude 
not included. 
Compound Poisson, z distribution for cluster size, magnitude not 
included in model. 
Homogeneous Poisson trigger events, nonhomogeneous Poisson 
aftershocks occurrences including spatial distribution of aftershock 
locations. 
Homogeneous Poisson trigger events and aftershocks, models 
magnitudes and occurrence times. 
Independent main events, branching along energy axis, defines temporal 
and spatial distribution of triggered events, extensions include Bayesian 
analysis and depth dependence. 

Revised from Anagnos and Kiremidjian, 1985 

size M 0 and there were no events in time (0, tl), expressed 
as P{N(t) > 0 and M/> m, (tl, tl + t)] N(q)  = O, Mo, (0, t~)} 
are also being sought.  

In order  to evaluate these probabilities various 
stochastic formulat ions have been used to model the 
occurrence process {N(t), t>~0} and the associated 
ear thquake size. M a n y  of the current models are based on 
similar assumptions with some variations in the form of 
application. In the following discussion, models with 
similar assumptions are grouped together as either 
Poisson, Markov ,  semi-Markov,  renewal or trigger 
models. Example references listed in Table 1 are cited 
within each group of processes. It should be noted that 
not all models listed in the table are explicitly referred to 
in the text primarily because they do not  fall within one of 
the categories discussed in this paper. However,  a brief 
description for each reference is provided in the table. 

Poisson models 
Ear thquake  events have long been assumed to occur 

randomly in time, space and magnitude.  A terse look at 
the plot of ear thquake epicenters in any seismic region of 
the world would reveal a great scatter even when tectonic 
features are relatively well known.  This initial 
observation has led to the assumption that earthquakes 
form a stochastically independent sequence of events in 
time and space. The Poisson process satisfies this 
independence assumption and, as such, has been used 
extensively in seismic hazard analysis. The sequence of 
events forms a memoryless process where the occurrence 
of a subsequent event does not  depend on the time, size or 
location of the last or  any of the preceeding events. 
Defining again N(t) as the number  of events in the interval 
(0, t) the count ing sequence {N(t), t~>0} is Poisson 
provided that 

e -  ~S(2s)k 
P { N ( t + s ) - N ( t ) = k }  - k! 

for k = 0 ,  1,2 . . . .  ; 2 > 0  (1) 

where 2 is the rate of occurrence of events. The 
interarrival times for the Poisson process {T1, T2, T3, 
. . . .  7",} must  be exponentially distributed with 
probabili ty density function fr(t) and cumulative 
distribution Fv(t ) given by 

f~(t)=)~e -~t t>~O, )~>0 (2) 

FT(t)= 1--e  -~' t~>0, 2 > 0  (3) 

The hazard function, or  failure rate, is defined as 

fr(t) - d  l o g [ 1 -  Fr(t)] (4) 
r(t) = [1 - Fr(t)] dt 

The hazard rate of the Poisson process is equal to the 
constant  implying that  the probabili ty of occurrence of 
an earthquake in a future small increment of time, At, 
remains constant  regardless of the size of the last event or 
the elapsed time since its occurrence. In physical terms 
this means that the energy release in a large ear thquake 
does not affect the reservoir of stored energy that is 
available to produce subsequent earthquakes 1. 
Consequently,  if a large ear thquake occurs at a point  in 
time, the likelihood of another  large event occurring in 
the near future is not  changed. 

Despite this counter-intuitive model characteristic, the 
Poisson model is used most  widely at the present time. 
The pr imary reasons for its populari ty are simplicity of 
model formulation,  the small number  of parameters  to be 
estimated, the diversity of regions where it can be applied 
and the relative ease with which hazard due to several 
sources can be combined.  Table 1 identifies the seismic 
hazard analysis models which are based on the Poisson 
assumption of ear thquake occurrences. The simplest of 
these models assumes that  ear thquakes occur 
independently and release all of their energy at a point. 
The hazard at a site due to seismicity in a generalized area 
source or  along a line source corresponding to a known 
fault is obtained by summing contr ibutions from 
individual points over these sources 2 4. 
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With the recognition of the importance of the rupture 
length associated with large earthquakes and its effect on 
the intensity of ground motion felt at the site, the 
elementary point source models were modified to include 
rupture length in the calculation of source-to-site 
distance 5 7. Other considerations, such as the 
intersection of a fault with a lifeline link 8 and the amount 
of differential displacement along the rupture length of a 
fault due to a given size event 9 have also been included. 
Applications to different regions in the world led to the 
modelling of dipping planes with varying slopes ~ o. Most 
recently, the directivity effects of source rupture have been 
represented by Araya and Der Kiureghian ~ i 

In all of the above models the rate of occurrence, 2, is 
related to the Gutenberg-Richter equation describing the 
number of earthquake events, N(m), of a given 
magnitude, m, or greater in time t given by 

In N(m)= ~-[~m (5) 

where ~ and/~ are empirical constants. Thus for a given 
magnitude of exceedance the frequency of occurrences is 

2( t )=e ~ jim for mo<~m~mm~,x (6) 

where m 0 and mma x are the lower and upper bound 
magnitudes respectively 3'5. The probability density 
function of magnitudes, f~(m), is most often assumed to 
be a truncated exponential given by 

f l e  -lira 

L' (m)=  [e-/~mo_e /~ ..... )] (7) 

The lower magnitude arises from practical 
considerations. For  example, earthquakes with Richter 
magnitudes smaller than 3.0 are not known to cause any 
structural damage and are thus excluded from the 
analysis. The upper magnitude is governed by the 
maximum earthquake capacity of a fault. A considerable 
amount of controversy exists, however, regarding both 
the validity of the Gutenberg-Richter relationship and 
the selection of the upper bound magnitude. 

Investigations of earthquake occurrence data for various 
regions of the world have shown that the log-linear 
frequency law fits the data relatively well in the mid-size 
magnitude range and usually very poorly in the upper and 
lower magnitude tails. Explanations can be offered for the 
lack of fit in the lower magnitude range. Records may be 
missing from the data since instruments have been placed 
at many locations only within the last few decades. This 
presents the additional problems of nonhomogeneous 
distribution of data over time and the presence of 
intervals with zero observations in the large magnitude 
ranges. The former problem has been treated in various 
ways including the approach proposed by Weichert lz 
which treats the unequal observation periods for different 
magnitudes separately when deriving the frequency law. 
In order to overcome the latter problem of overestimating 
the frequency of large magnitude events and to represent 
more realistically the nonlinear character of the 
cumulative frequency versus magnitude data, the 
following were proposed: a quadratic relationship 13, a bi- 
linear one 1°, and a modified form of the Gutenberg- 
Richter relation based on seismic moment and fault 
slip~4. The third formulation produces a triple 
exponential function of the largest annual event ~5. 
Another form of the recurrence relationship is based on 

the hypothesis that individual faults tend to generate 
earthquakes of approximately the same size within half a 
magnitude. The frequency distribution of these 
'characteristic events' is nonlinear, consisting of an 
exponential region and a region with zero slope 16. 
Weichert's approach and the bi-linear function do not 
change the overall model formulation with the bi-linear 
function being applied extensively. 

Difficulties with estimating the upper magnitude 
bound has led to considerable discussion among scientists 
and engineers. Most often the upper bound magnitude is 
arrived at by a combination of methods 1~. One method is 
to review past seismicity to determine the largest 
earthquake event ever recorded in the study region. If 
available, empirical magnitude versus rupture length 
relationships (or magnitude versus fault rupture area 
relationships) may be combined with information about 
fault type and fault dimensions, thus essentially 
representing the physical limitations of the fault zone in 
the estimate of the maximum magnitude. Most often 
these relationships are represented by log-linear 
equations. In addition, geologic evidence of large 
magnitude events from trenching and carbon dating can 
be combined with relationships of displacement versus 
magnitude. Finally, the slip rate may be correlated with 
the maximum magnitude on a fault. Since none of these 
methods are reliable, the uncertainty associated with the 
upper bound magnitude can be considerable. Depending 
on the assumptions that are made, hazard probabilities 
may be very sensitive to the upper bound magnitude. In 
addition, the larger size events can be the most significant 
contributors to the seismic hazard in a region, especially 
when the source is a considerable distance away from the 
study site 16. One approach to this problem has been to 
account for the uncertainty of the upper bound 
magnitude by treating it as a random variable 18 20 

Validation of the Poisson assumptions is in general 
very difficult due to the sparsity of data in most regions of 
the world and the lack of understanding of the 
geophysical earthquake generating processes. The 
representation of the sequence of events as a memoryless 
process has been shown to be adequate for sequences of 
main events in a certain catalog in Southern California 2~. 
However, this may not be a good representation of data 
for other geographical locations. In addition, foreshock 
and aftershock sequences cannot be represented by the 
homogeneous Poisson model because they appear as 
clusters in the data. A compound Poisson process may be 
more suitable for representing clustering of events 22. In 
such a model, clusters containing Y,, events are assumed 
to be independent identically distributed and to occur as 
Poisson sequences. The number of events in a cluster, Y,,, 
are independent identically distributed random 
variables and are independent of the Poisson process. 
Then the total number of earthquake events in time (0, t) 
is described by the compound Poisson process, {X(t), 
t~>0} given by 

n N(t) 

X(t)= 2 Y,, (81 
n 0 

This model, however, requires that the distribution of Y,, 
be known in addition to the Poisson process parameters. 

The assumption of a constant rate of earthquake 
occurrence, and hence the use of the homogeneous 
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Poisson model, has often been questioned. An 
examination of earthquakes in China since 1177 B.C. 23'24 
showed the rate of occurrence to increase and decrease 
periodically in a cycle of about  300 years. It was also 
shown that while the stationary Poisson model can still be 
used for seismic hazard estimation when there is 
periodicity in the seismicity rate, the occurrence rate for 
the model should be estimated with caution, taking into 
account recent trends. Bender 25 attempts to represent the 
cyclic pattern of earthquake activity by the use of a simple 
renewal model in which the rate of the Poisson process 
alternates between two values. However, the periodic 
effect associated with certain earthquake catalogs has 
been shown not to be significant when clustering is taken 
properly in account zz. 

Estimation of the occurrence rate of the Poisson model 
using historic catalogues presents another difficulty 
because of incompleteness and biases in the data. Various 
methods have been employed to obtain estimates of the 
occurrence rate incorporating instrumental, historical, 
geological and subjective information. The occurrence 
rate, which is related to the Gutenberg-Richter  
relationship (equation (5)), is most often obtained by 
simple linear regression techniques using instrumentally 
recorded data z'3'1°. Other methods for estimating the 
parameters of equation (5) include the maximim 
likelihood az'2z'26 and maximum entropy 27'2s. Often, 
instrumentally recorded data are augmented by historic 
accounts z3'29 or geologic information such as slip rate or 
moment  rate 7'3° 32. Bayesian methods are frequently 
used to combine the results of several of these techniques 
or to incorporate subjective information z9,3z 33. 

Despite its many limitations, the Poisson model is 
extensively used in seismic hazard assessment and the 
development of seismic hazard maps. Methods for 
improving the parameter  estimates and to address 
parameter  uncertainty have also been proposed. 
However, one is still faced with the problem of describing 
specific patterns that are apparent in earthquake 
catalogues and geophysical earthquake generating 
mechanisms. As will be discussed in the next section, the 
consequence of representing earthquakes as a 
memoryless sequence of events is that the hazard at a site 
can be overestimated or underestimated when 
occurrences are time, magnitude or location dependent. 

Markov and semi-Markov models 
Modelling of faults in laboratory experiments 35,36 

have shown that as two sides of a fault move in opposite 
directions they remain locked until sufficient shear stress 
builds up, then slip occurs and the fault subsequently 
locks again. Thus, a sequence of earthquakes can be 
represented by a process of strain accumulation 
interrupted by sudden releases. This laboratory 
representation of the elastic rebound theory suggests that 
the times of occurrence and magnitudes of a sequence of 
earthquakes on a given source may not be stochastically 
independent. In the attempt to overcome the modelling 
problems associated with the memoryless property of the 
Poisson process, other stochastic models have been 
considered. Markov models and semi-Markov models 
are useful in describing a unique type of dependence in a 
sequence of events. For  these models a state space E =  
{1,2,3 . . . . .  N} is defined such that the states may 
correspond to various fault stress levels, energy release 
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levels or magnitudes of earthquake events. The process 
{X(t), t >>, 0} describes the visits to these states and is said 
to be a Markov process provided that 

P{X(t  + s) =jlX(h) = i, 0 < h <<, t} = P{ X(t  + s) =jlX(t)  = i} 

for t, s > 0 and all i ,j  ~ E (9) 

Thus the probability of being in some state j at a future 
time t + s is deduced from knowledge of the state i at an 
earlier time t and is independent of the history of the 
process up to time t. The transition probabilities, 
P { X ( t + s ) = j l  X( t )=i} ,  completely determine the 
Markov process. The Markov process assumes that the 
holding time, hls(t), defined as the probability that the 
process stays in state i for a time period t before it moves 
to state j is exponentially distributed with parameters 
conditional on state i. In comparison, the semi-Markov 
model is not restricted to exponentially distributed 
holding times. In addition, for the semi-Markov process 
the holding times in a given state are identically 
distributed conditional on both the current state and the 
next state thus providing greater flexibility in modelling. 
In most semi-Markov earthquake occurrence models, 
parameters and distributions have been chosen to assure 
increasing hazard rates for the holding time distributions 
(e.g., Weibull, gamma) implying that the probability of an 
earthquake occurring in the near future increases with the 
time since the last event. For example, the hazard for the 
Weibull distribution given as r(t) = 2vt"- 1 exp~ _ 2t"} has 
an increasing hazard rate for parameters v > 1 and 2 > 0. 
The increasing hazard rate captures some of the 
characteristics of stress build-up and release. A 
disadvantage of these models is the large amount  of data 
needed for estimating parameters. However, a major 
advantage is that information on seismic gaps can be 
included and hazard forecasts can be updated to reflect 
the occurrence of the most recent event. The following are 
some examples of Markovian models used in seismic 
hazard computations. 

Vagliente 37 represents the seismic process as a two 
state Markov chain with the states defined as occurrence 
and nonoccurrence of earthquakes in a specified time 
interval. By modelling the energy or stress accumulation 
and release, Markov models have also been used to 
describe aftershock sequences 38 as well as sequences of 
main events followed by aftershocks 39'4°. Veneziano and 
Cornell 4° consider the spatial redistribution of stress and 
consequently the spatial dependence between seismic 
events. Uribe-Carvajal and Nyland 4~ have extended 
Knopoff 's model 39 by including a finite element model of 
the study region to describe the spatial distribution of 
events. Lomnitz-Adler 41 simulates what could be 
interpreted as a Markovian model to represent a 
simplified spatial distribution of earthquakes on a series 
of faults by including the accumulation and release of 
stress on adjacent blocks. In many of these formulations 
the energy or stress levels constitute the states of the 
process. Visits from one state to another represent the 
occurrence of earthquakes and are described by the 
transition probabilities. These probabilities, however, are 
difficult to obtain from the very limited data and thus the 
models have not been applied to any particular region. 

Semi-Markov models have been used to represent the 
sequence of large magnitude events and to characterize 
spatial and temporal seismic gaps found in the earthquake 
occurrence catalogues 4~,44. In order to develop the 
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holding time distributions and state transition 
probabilities, Patwardhan et alff 3 and Cluff et al. 44 use 
historical and geologic data. However, they rely mostly 
on subjective input to develop these probabilities to 
complement the small amount of available data. Bayesian 
techniques are used to combine the various sources of 
information. Several other semi-Markov models based 
on the time- and slip-predictable hypotheses 45 have been 
developed 46'47. Anagnos and Kiremidjian 46 model the 
mechanism of strain accumulation and release on a 
specified seismic source. Conditional holding times for 
this model are considered to be Weibull distributed with 
an increasing hazard rate in the range of values of interest. 
The state transition probabilities are derived by 
considering the stress accumulation (or slip) rate and the 
amount of stress release (or seismic slip) associated with 
various magnitude levels. The conditional holding time 
distributions and the state transition probabilities are 
developed from historical data as well as from 
geophysical considerations of the fault mechanism not 
employed in previous models. 

This particular model has been extended to include 
spatial patterns of earthquake occurrence 4~. The state 
space of the spatial-temporal model is a set E =  
[ 1,2 . . . . .  N} describing the stress level and location on a 
fault. The set [Y,: n>~0} are independent identically 
distributed random variables assuming values in E and 
{7",: n>~0} are nonnegative random variables such that 
0<  T 1 < T 2 . . . .  The stochastic process {(Y,,, T,): n~>0} is a 
Markov renewal process. For this model Y,, represents a 
pair (S,,L,) where S, is the stress level at the epicenter 
immediately after the earthquake event and L, is the 
location of the epicenter that event along the fault. The 
process also keeps track of the maximum stress level 
immediately after an event denoted by S +. A number of 
simplifying assumptions are needed for the spatially 
dependent model in order to develop the transition 
probabilities and the holding time distribution. Further 
detail on the development of this model is given in Ref. 48. 
Simulations of earthquake sequences using this model 
have demonstrated the effect of spatial dependence. The 
relatively large number of states needed to represent the 
spatial extent of the seismic source and the magnitude 
range significant for hazard assessment may pose, 
however, computational difficulties. 

From applications of the time-predictable formulation 
to the plate boundary along the San Andreas fault it was 
observed that hazard forecasts could differ significantly 
from hazard estimates obtained by the commonly used 
Poisson model when a long time has elapsed since the last 
major sesmic event. The observation can have serious 
implications for the estimation of seismic design 
parameters particularly for critical facilities. These 
models are applicable primarily to plate boundaries and 
regions characterized by large infrequent events. A 
difficulty with all of these models can be in defining an 
initial condition, that is knowing the size and the time of 
occurrence of the last seismic event. Verification of the 
Markov and semi-Markov models temporal and spatial 
dependence has been limited to testing by 
simulation 40,48. 

Renewal models 
Another group of models that attempt to represent 

specific patterns in the earthquake catalogues or physical 

characteristics of a region are those based on renewal 
theory. In these types of models, the process restarts after 
the occurrence of each event. Therefore, the interarrival 
times are independent identically distributed random 
variables. The Poisson process is one of the simplest 
examples of a renewal process. Kameda and Ozaki 49 
describe a particular type of temporal dependence, in 
which the rate of a Poisson process can have two distinct 
values depending upon the time since the last event. 
Kameda and Takagi 5° combine a renewal model for 
major offshore seismic sources with a nonstationary 
Poisson-type model for secondary sources to represent 
interaction between faults. Another, Poisson-type 
renewal model is developed by Savy et al. 5~ to reflect 
strain build-up that takes place in the time interval 
between earthquake occurrences. In their model the 
occurrence rate increases with time and returns to its 
original value after each earthquake. Many of these 
models have a limited use because they represent a 
specific catalogue or they are idealizations of particular 
patterns of earthquake sequences. Their verification has 
been performed only for the earthquake catalogues 
specfic to the given geographic location. 

Kiremidjian and Anagnos 52 use a Markov renewal 
model based on the slip-predictable hypothesis to 
describe the dependence of the size of future earthquakes 
on the elapsed time since the last event. Interarrival times 
are assumed to be Weibull distributed with an increasing 
hazard rate for the range of parameter values of interest in 
applications. The advantages of this model similar to the 
semi-Markovian models are that temporal seismic gaps 
are well represented and the additional information 
needed for parameter estimation can be obtained from 
considerations of the geophysical process at a fault. 
Applications of the model, however, are usually limited to 
regions characterized by large magnitude infrequent 
events or interplate boundary faults. Parameter 
estimation can be obtained from considerations of the 
geophysical process at a fault 53'~4. 

Trigger and branching models 
As was discussed earlier, it is difficult to either accept or 

reject the Poisson assumptions for modelling earthquake 
occurrences. Since statistical analysis of earthquake 
frequencies have revealed correlations between the 
number of events in successive time intervals and values of 
the Poisson index, trigger models were proposed to 
account for variations from Poisson-like behaviour 5s-57. 
In these types of models the trigger events (or events 
initiating the group of shocks) occur at the instants of s 
simple Poisson processes with a constant rate. The decay 
of events within a cluster is described by the function 
t*(t) with the properties given by Ref. 55 as 

p( t )=0  for t < 0  (10a) 

/~(t) >~0 for t>~0 (10b) 

fo ~ p(t) d t =  1 (lOc) 

The decay functions, p(t), are most often considered to be 
exponential or inverse power functions of time. The 
conditional probability that an event will occur in a small 
interval of time (t + s, t + s + ds), given that a trigger event 
occurred at time t, is assumed to be independent of t and 
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equal to Ap(s). The quantity A characterizes the size of the 
group. It is assumed to be a random variable with a 
distribution FA(a) having a finite mean and variance. The 
separate trigger events generate independent sequences of 
shocks and the random variables A, associated with 
distinct trigger events, are also independent sS. The 
distribution of the number of shocks in a single trigger 
event is given by 

i °~ ~" e -~ dF~(~)/n! (11) P, 
J0 

This type of model is used to represent catalogues of 
earthquakes as well as main events followed by 
aftershocks. Trigger processes have been employed $5'56 
to include foreshock and aftershock clusters in the hazard 
analysis estimates. Aftershock clusters in the Merz and 
Cornell model 57 occur as nonhomogeneous Poisson 
processes. The spatial distribution of aftershock 
epicenters is considered in this model by confining them 
within a limited area around the main shock. It is 
important to understand the value of these types of 
models because aftershocks may be a significant 
contributor to the hazard at a site. 

Kagan and Knopoff 5s-6° propose another approach 
for representing the space, time and magnitude 
relationship among earthquakes through the use of a 
branching renewal model. The particular structure of 
these models resembles that of the trigger model. In 
addition, in their formulation a statistical method which 
couples the maximum likelihood method and second 
order moment calculations has been used to determine 
the space-time-magnitude correlation. From the analysis 
of worldwide data they have demonstrated the migration 
of epicenters, the existence of gaps following large events 
and the occurrence of foreshocks and aftershocks 
associated with a main event. 

Estimation of the parameters of trigger and branching 
models is even more difficult than for many of the models 
discussed earlier because of the greater detail needed in 
the earthquake data sequences. Their verification has also 
been limited by the lack of sufficient information. Due to 
their modelling limitations, these models have not been 
applied to any particular region. 

SUMMARY OF RESEARCH NEEDS 

The multitude of models described in this paper were 
grouped according to their stochastic formulations. The 
main distinction, however, which separates these models 
is their potential for widespread application. While the 
homogenous Poisson models have been the most popular 
for seismic hazard estimation and have been extensively 
applied to various regions in the world, they have been 
shown to be limited in their representation of the 
geophysical earthquake driving mechanisms. Their basic 
assumptions of temporal and spatial independence and 
homogeneity have been shown to be a major limitation 
when characterizing large infrequent events or when 
modelling seismic hazard in regions with specific 
occurrence patterns. Their validity has been demon- 
strated for only a few regions. The popularity of the 
Poisson model is due to its simplicity and relative ease of 
application. Because these types of models have been 
studied so extensively, however, the main difficulties with 
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their parameter estimation and sensitivity to parameter 
uncertainties have been revealed and alternate solutions 
have been proposed. With the incorporation of these 
addended formulations, the simplicity of the Poisson 
model has been somewhat lost leading to rather involved 
techniques for parameter estimation or to more complex 
forms of the model itself. 

Most of the remaining models attempt to represent 
either a specific pattern observed in a catalogue or a 
pattern that is built on the geophysical assumptions of the 
earthquake occurrence mechanism. Among these, the 
models based on geophysical considerations appear to be 
the most promising. For  example, temporal variations in 
the occurrence sequences such as those associated with 
seismic gaps are best represented through time dependent 
models. It has been shown that the time and space 
dependent models would provide very different hazard 
estimates from the Poisson model depending, for 
example, on the duration of the gap (i.e., the elapsed time 
since the last event) and the average interarrival time. In 
particular, if the elapsed time since the last major 
earthquake is of the order of the mean interarrival time, 
the time-dependent models will predict a considerably 
greater hazard than the Poisson model. This observation 
contradicts the common belief that the Poisson model 
provides the most conservative estimates of the hazard. 
Contrary to many of the other non-Poissonian models, 
estimation of the parameters of the stochastic time- and 
slip-predictable models do not rely exclusively on 
earthquake occurrence data. The type of information 
needed for these models is most often obtained from 
geophysical considerations. For  example, average strain 
rates or moment rates can be used to estimate the stress 
accumulation rate along a fault. The time dependent 
models are still untested for their sensitivity to 
variabilities in the data and in general are restricted to 
large infrequent events. 

The remaining stochastic earthquake occurrence 
models are found to be very limited in their applications. 
The large amount of data needed for the development of 
their parameters as well as the constraints of the 
underlying assumptions, the complexity of model 
formulations and the extensive computational effort 
needed, make them too restrictive for widespread 
applications. 

In the dilemma as to which model should be used for 
hazard estimation in a particular region, it appears from 
this review that initial estimates of that hazard are best 
obtained by the homogenous Poisson model. If, however, 
specific features can be identified for the region and the 
type of information is available to apply one of the other 
models that model should be further explored and used 
for seismic hazard analysis. 

New models will inevitably be developed as the 
geophysical earthquake generating mechanism becomes 
better understood. Future research effort should be 
concentrated on developing models which attempt to 
reflect the physical mechanism of seismic events even if 
sufficient data for developing the parameters of these 
models are not available. The uncertainty in these models 
will reflect the systematic error due to the lack of data. 
This uncertainty can be reduced over time as these data 
become more available. In comparison, errors resulting 
from physically vague models are difficult to assess and 
reduce. Particular attention should be given to the 
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var ious  r u p t u r e  processes  a long  a seismic fault  and  the  
t ransfer  o f  energy  f rom the r u p t u r e  z o n e  to ad jacen t  
loca t ions .  S tochas t i c  mode l s  r ep resen t ing  these  
mechan i ca l  m o d e l s  can  then  be  d e v e l o p e d  to  represen t  the  
sequence  of  events  a long  a s e i smo tec ton i c  feature .  It  
shou ld  be  r ecogn ized ,  howeve r ,  tha t  the  s imple  mode l s ,  
such as the Po i s son  m o d e l s  shou ld  no t  be  a b a n d o n e d  
since they have  been  s h o w n  to be  sufficiently g o o d  
p red ic to r s  of  sma l l e r  size e a r t h q u a k e s .  Thus ,  a 
c o m b i n a t i o n  of  mode l s ,  one  for  large  events  and  one  for 
smal le r  size events  m a y  be  a p p r o p r i a t e .  T h e  specific 
d iv is ion  is difficult  to genera l ize .  H o w e v e r ,  for  a g iven 
fault  the  d iv is ion  in to  la rge  and  small  even ts  for m o d e l  
select ion p u r p o s e s  w o u l d  d e p e n d  on the  phys ica l  
cond i t ions .  F o r  example ,  for  even ts  which  do  no t  have  
assoc ia ted  s ignif icant  fault  d i sp l acemen t s  o r  r up tu r e  
zones  a P o i s s o n  m o d e l  w o u l d  seem a p p r o p r i a t e .  F o r  the  
even ts  wi th  ident i f iable  r u p t u r e  zones  a m o d e l  ref lect ing 
this r up tu r e  po ten t i a l  shou ld  be  sought .  

T h e  grea tes t  difficulty in app ly ing  all of  the d iscussed  
mode l s  is the lack of  sufficient da ta .  H o w e v e r ,  wi th  the 
increased  u n d e r s t a n d i n g  of  the phys ica l  p rocess  and  the  
d e v e l o p m e n t  of  phys ica l ly  m o r e  a c c u r a t e  mode l s ,  the 
types of  d a t a  tha t  a re  needed  will a lso be  identif ied.  O n l y  
af ter  such d a t a  are  p r o p e r l y  cha r ac t e r i z ed  can  they be  
ga the red  and  ana lysed .  T h e  degree  of  soph i s t i ca t ion  bui l t  
in to  a m o d e l  and  the  a m o u n t  of  effort  pu t  in to  co l lec t ing  
the a p p r o p r i a t e  a m o u n t  of  da ta ,  h o w e v e r ,  shou ld  a lways  
be  cons i s ten t  wi th  any subsequen t  analys is  and  use of  
results.  
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