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ABSTRACT

Bahr, K., 1991. Geological noise in magnetotelluric data: a classification of distortion types. Phys. Earth Planet. Inter., 66:
24-38.

Decomposition of the magnetotelluric impedance tensor into parameters relevant to a general Earth model that allows for
galvanic distortion and regional induction has become a powerful data evaluation tool. Two similar techniques that
incorporate superimposition of local three-dimensional and regional two-dimensional structures are considered. Both tech-
niques have two serious limitations: (1) the conductivity structure might be less complex than assumed in the general model
and therefore irrelevant model parameters are derived; (2) the regional conductivity structure may be more complicated than
indicated by a two-dimensional model. The first problem is addressed in this paper by considering seven classes of general
model of increasing complexity. Procedures are suggested that can be used to assign a particular datum to only one of the
model classes. Therefore dimensionality parameters are suggested which include conventional and regional skew as well as
local and regional structural dimensionality indicators. To address the second problem, an extension of the decomposition
technique is presented that allows for a departure from the purely two-dimensional case for regional structures. An example,
together with field data, is provided from the German deep drilling site. It explains how the decomposition technique recovers
the two impedance phases belonging to a large regional anomaly although the impedance tensors are influenced by strong
local distortion. This example also illustrates how the length scale of inductive structures can be estimated from the frequency

dependence of the structural dimensionality parameters.

1. Introduction

The most important improvement in our under-
standing of experimental magnetotelluric data
arises from techniques that evaluate all four com-
plex elements of the magnetotelluric impedance
tensor. These methods provide quantitative solu-
tions for cases in which the measured impedance
tensor does not conform to the ideal two-dimen-
sional tensor. They may be split into two groups:
(1) decomposition schemes which assume a priori
general conductivity models and extract the
parameters of a particular model from the ele-
ments of the tensor (Larsen, 1977; Zhang et al,,
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1987; Bahr, 1988; Groom and Bailey, 1989); (2)
mathematical treatments of the impedance tensor
as a rank 2 matrix (Eggers, 1982; Spitz, 1985;
Cevallos, 1986; LaTorraca et al., 1986).

The latter group has recently been reviewed by
Groom and Bailey (1990). The concepts offered by
these techniques have seldom been applied to ex-
perimental data, probably because they do not
take into account static shifts which seriously af-
fect the measured impedance in many field situa-
tions. In contrast, in the decomposition schemes
of the first group, a part of the general model is
used to describe local conductivity structures that
are responsible for static shifts. It has become
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evident that ‘telluric distortion’ is a combination
of both static shifts and angular deviations of the
induced telluric fields.

In this paper two recent decomposition tech-
niques based on the principal superimposition
model of a regional two-dimensional (2D) struc-
ture and a local three-dimensional (3D) structure
(Bahr, 1988; Groom and Bailey, 1989) are consid-
ered in a synoptic manner. The ‘telluric vector
technique’ of Bahr (1988) is expanded to take into
account moderate departures of the regional struc-
ture from the exact 2D case. The resulting for-
mulae provide analytical solutions for the model
parameters, e€.g. impedance phases, strike and
skew, even for strongly distorted tensor imped-
ances. Field data are treated from a magnetotel-
luric target area in the vicinity of the German
deep drilling site where extreme distortions occur.
For practical use, the telluric distortion is subdi-
vided into seven ‘classes’ of increasing model com-
plexity, and appropriate model parameters are
derived for each class.

2. Basic concepts for the case of a departure from
two-dimensionality

In magnetotellurics one assumes that in the
frequency domain the horizontal electric field E
and the horizontal magnetic field B are linked
through a complex impedance tensor Z:

E-zBz-|2" 0 (1)
’ Zye 2y

Here and in the following sections, Cartesian co-
ordinates (x, y) refer to observations, and coordi-
nates (x’, y’) refer to a regional 2D structure,
with x” normal to strike.

In the conventional 2D evaluation, only the
off-diagonal elements Z,, and Z,_ are interpreted
by the use of 1D or 2D models. The main diago-
nal elements Z . and Z,, are used only to com-
pute the skew parameter, which is not interpreted
by the model but rather describes the deviation of
the conductivity distribution from the exact 2D
case. In this section, two methods are reviewed
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that take into account all the elements of the
impedance tensor.

(1) ‘Telluric vectors’ (Schmucker and Wiens,
1980; Bahr, 1988). Let X, ¥ be umt vectors in the
north and east direction, respectively. The two
columns of the impedance tensor are presented in
terms of two complex ‘telluric vectors’,

ex = Zxxi + Zyxy and e)" = Zx}’i + Zy}'y (2)

e, 1s the electric field induced by a magnetic field
B, which is linearly polarized in the north—south
direction. Only in the special case where Z_, = 0 is
this electric field linearly polarized in the west—east
direction. Similarly, e, is induced by B,. Graphi-
cally, each complex telluric vector e or Aey may be
shown by two vectors: the real vector representing
the electric field in phase with the inducing mag-
netic field, and the out-of-phase vector.

Although, the telluric vectors only provide a
method of presentation of the information con-
tained in the impedance tensor, the second method
tries to adapt a principal conductivity model to
this tensor. For example, Cagniard (1953) and
Swift (1967) used models of a 1D and 2D conduc-
tivity distribution, respectively, and Swift (1967)
was the first to propose the use of a parameter, the
skew, as a measure of deviations from his prin-
cipal model.

(2) The model of a local 3D anomaly over a
layered Earth (Larsen, 1977). The local model can
be thought of as a top layer structure of locally
varying conductance. The model yields the general
impedance tensor

a,, a4y 0 Z,

Z_(‘lzl azz)(_z O) 3)
Z, is the normal impedance of the layered Earth.
The distortion matrix elements a,;, a;,, a,; and
a,, are real and independent of frequency at low
frequencies, for which the top layer structure is
small compared with the penetration depth.
Therefore, all elements of the measured tensor
must have the same phase if they are to be ex-
plained by eqn. (3).

Larsen (1977) evaluated long-period data with

penetration depths as great as 100 km and more,
and these data fulfilled the above condition. His
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general model, however, has also been applied to
shorter periods. I will therefore present a dimen-
sionality parameter that describes how much par-
ticular data depart from the model (3).

Consider the modified impedances

S\=Zu+Z,, S=Z,+Z,,

Dl =Zxx_Zyy7 D2=ny—zyx (4)

S, and D, are rotationally invariant. Swift’s (1967)
skew 1s

k=1S1/1D,] (5)

The phase differences between two complex num-
bers C1 and C2 and the corresponding amplitude
products are now abbreviated by the commutators

[c1, C2] =Im(C2C1*)
=ReClImC2—-Re C21Im C1
and

{(C1, C2} = Re(C2C1*)
=ReClRe C2+ImC2ImCl (6)

(* indicates the complex conjugate). A rotation-
ally invariant measure of phase differences in the
impedance tensor is

p=(I[D,, S;11+1[S1, D.11)"/1 D] (7)

It should be noted that this measure becomes
unstable if the skew « defined by (5) is very small.
Larsen (1977) pointed out that only the phase is
obtained, and instead of the magnitude of the
normal impedance Z,, the magnitude of a ‘shifted’
impedance D - Z, is revealed. This is obvious from
the decomposition of eqn. (3), which consists of
six independent parameters, the four distortion
matrix elements and the complex normal imped-
ance. On the other hand, if p=0, a measured
impedance tensor will provide only five parame-
ters: the common phase of all the tensor elements
and multiples of the four distortion matrix ele-
ments:

z a;,/D a,,/D 0 Dz,
“\ay/D ay/D —-DZ, 0
The parameter D, which cannot be resolved from

the measured tensor impedance, is referred to as
the “static shift’ factor.

(8)

K. BAHR

3. The principal superimposition model: a local 3D
anomaly over a regional 2D structure

In an earlier paper (Bahr, 1988), Swift’s (1967)
and Larsen’s (1977) model were combined to ob-
tain a principal model that allows for both skew
and phase differences in the tensor. This model is
only briefly summarized here. It consists of a thin
top layer of varying conductance over a regional
2D structure. It is referred to as the ‘superimposi-
tion model’ in the following discussion. In the
(x’,y") coordinate system of the regional 2D
structure the impedance tensor is

7 — apn  4ap 0 an’y'
an s - Zny'x' 0
_ _al2Zny'x' a]lznx'y'
—a222ny'x’ aZIan'y'
orZ=AZ,, (9)

The regional impedances Z, .- and Z,,.,- pro-
vide the two regional phases. Within each column
only one phase occurs. In the ‘telluric vectors’
concept (eqn. (2)) this means that the in-phase and
out-of-phase vectors of e, are parallel, and the
in-phase and out-of-phase vectors of e, are paral-
lel as well.

In an arbitrary (x, y) coordinate system the
impedance tensor
Z=T/AZT, (10)
is found. Its elements are linear combinations of
Z,v and Z, ... T, T! are rotation tensors,
where the superscript 7 indicates a transpose and
the label a refers to a regional strike angle a. This
can be found by using the condition that the two
elements of the impedance tensor of eqn. (9) which
belong to the same telluric vector e, have the same
phase, and the result is

tan(2a) = ([ Sy, ;] [ Dy, D,])

/([Sl? D]]+[S27 D2]) (11)
using the abbreviations of eqn. (6) (Bahr, 1988). A
rotationally invariant dimensionality parameter
that explains the extent to which a particular data
set can be interpreted with the superimposition
model is the regional skew

n=([Dy, S]1 -8, D,]11)"*/1 D, (12)
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(Bahr, 1988). Formally, this parameter is found
from the condition that in the coordinate system
of the regional 2D structure, Z .- has to have the
same phase as Z .- and also Z,- - has to have the
same phase as Z -, as any departure from these
two conditions results in a regional skew larger
than zero. It should be noted that eqn. (11) yields
an unstable result for the regional strike if p = 0.
In that case, the application of the superimposi-
tion model would result in an overestimation,
because p=0 indicates that the less complex
model of eqn. (3) for a regional 1D Earth would
be sufficient and therefore a regional strike would
make no sense. 1 can therefore be referred to as
an indicator of regional one-dimensionality.

The decomposition of eqn. (9) requires 10
parameters (Bahr, 1988): two complex regional
impedances, four distortion matrix elements, the
regional strike « and the regional skew 7. As the
impedance tensor provides only four complex ele-
ments, two unknown static shift factors occur in
the decomposition as shown below.

In the coordinate frame of the regional conduc-
tivity structure, the angular deviations B8, and S,
of the telluric vectors e, and e, are given by

tan(B,) = —Zo/ Ly = —ap/ay
and
tan(BZ) = Zy'y//zx'y' = aZl/all' (13)

and are determined from ratios of the distortion
matrix elements. They are referred to hereafter as
‘skew angles’. The magnitudes of the distortion
matrix elements are, however, inseparably linked
to the magnitudes of the two regional impedances:

)1/2

_ 2 2 _ ’
ZE - (a12 + azx Zn)"x' =D Zny'x'

Zy= (a121 + a%l)l/z

an'y' = D”an’y' (14)
D’ and D" are the two unknown static shift
parameters corresponding to Larsen’s (1977) static
shift D for the regional 1D case.

Recently, Groom and Bailey (1989) presented a
decomposition that also incorporates the superim-
position model, as does the decomposition of eqn.
(9). In their approach, the distortion matrix A
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itself 1s also factorized. The general impedance
tensor according to Groom and Bailey (1989) is

Z=TIAZ,T,

, T( _(1 _S)(e_ t)Zny'r'

A+s)yl-te)z,.
=g'T T T,
N-A-s)y(A+e)Z,,

(T+s)e+1)Z, 7"
(15)

where g' =g/[(1 +e?)(1 +¢3)(1 + sz)]]/2

The relationship between the distortion parame-
ters g, s, t, e and the elements a,;, a;5, a5 and
a,, of the distortion matrix is briefly summarized
as follows.

(1) The parameters ¢ and e (‘twist’ and ‘shear’)
define the two angles

B, = arc tan(r) and B, = arc tan(e), (16)
such that the sum and difference of these angles
yield the skew angles given by eqn. (13), i.e.

B+ B, = B, = arc tan(ay /ay, ),

B.— B, = B, = arc tan( —ay,/ay,) (17)

(2) The static shift factors linked to the two re-
gional impedances are

2s 12 , 4 4 \1/2
gl—(lTsz) =D=((112+022)

1,2

2s ’r 1,2
=D"=(a}, +a3,) (18)

(1+5%)

The relationship between the model parameters of
the decomposition of eqn. (15) and the modified
impedances may be explained by a simple non-
linear system of equations (Groom and Bailey,
1989):

S, = t§2 + eD,

D, = §2 - etbz

S, = (D, - etS,) cos(2a) — (D, + eS, ) sin(2a)
Dy = (tD, + eS)) cos(2a) — (D, — erS, ) sin(2a)
where §2 =Zs+Zy

and D,=2Z, — Z, (19)

The distortion parameters g and s cannot be
calculated from an experimental data set for the
same reasons for which D’ and D" are inaccessi-
ble. Because this system of equations does not

g[l+
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incorporate a regional skew, only seven model
parameters have to be computed: the complex
impedances S,, D,, the regional strike « and the
local distortion parameters e and ¢. As eight input
parameters are available, the system of equations
(19) is slightly overestimated. For its solution a
least-squares fitting procedure can be used.

The sequence in which the model parameters
are derived constitutes the principal difference
between the decomposition according to Groom
and Bailey (1989) and the method of Bahr (1988)
based on ‘telluric vectors’: The latter method pro-
vides straightforward solution formulae for the
regional strike a (eqn. (11)) and the regional skew
1 (eqn. (12)). After the impedance tensor has been
rotated into the coordinate frame of the regional
strike «a the regional impedances and the distor-
tion parameters (eqn. (13)) are found. In contrast,
Groom and Bailey (1989) estimated these parame-
ters simultaneously from an inversion of eqn. (19).
The results are, however, identical if n =0. For
experimental data, it is always the case that n > 0,
i.e. the regional conductivity distribution is not
exactly two-dimensional. In that case, the least-
squares solution of eqn. (19) sometimes yields
more stable estimates of the regional strike than
the telluric-vector technique (R.W. Groom, per-
sonal communication, 1989). The latter has the
advantage that it can easily be implemented
without numerical efforts for the solution of eqn.
(19). A description of the linearisation procedure
of eqn. (19) has been given by Ritter (1988). In the
following section, it is attempted to construct a
decomposition scheme that is as robust as the
inversion solution of eqn. (19) but can be imple-
mented as easily as eqn. (11).

Zhang et al. (1987) also applied a decomposi-
tion corresponding to eqn. (9). Their principal
model is a special case of the superimposition
model, because in their approach the local anomaly
is considered to be 2D.

4. A straightforward robust decomposition method
for the case of moderate departures from the
principal superimposition model

If n =0, then the phases of the two regional
impedances which occur in the superimposition
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model can easily be obtained from
Gop=arg Zo o, b o=arg Z,o (20)
in the coordinate frame given by eqn. (11). For

non-zero 17, these phases may be obtained from
the phases of the telluric vectors as defined by

tan(¢, ) = [(Im Z.)'+ (Im Zyx)zll/2
/[(Re 2,V + (Re 2,,)"]
tan(cpey) = [(Im ny)z + (Im Z”,)Z]]/z

/|(Re Z,,)* + (Re zyy)z]l/2 (21)

(Bahr, 1988). For non-zero 7, however, eqn. (11)
may not yield a reliable regional strike because
1 # 0 means a departure from the principal super-
imposition model; in that case, no coordinate sys-
tem exists in which the impedance tensor takes the
simple form of eqn. (19). In the coordinate system
found with eqn. (11), the phases in one column of
the impedance tensor may then coincide perfectly
whereas the phases of the other column may differ
very much. This can also happen in the coordinate
system found by a least-squares solution of eqn.
(19) after Groom and Bailey (1989), in particular
in the case of strong anisotropy. Then, only the
telluric vector with the larger modulus determines
the solution, whereas the phase of the other tel-
luric vector is poorly resolved.

Therefore the superimposition model of eqn.
(9) is now modified so that a regional skew 7, if
any, results in a ‘phase deviation’ in the main
diagonal elements of Z. The phases in one column
of the tensor which would coincide if eqn. (9)
describes the tensor exactly now differ by a phase
deviation angle 8. To avoid any ‘preference’ for
one of the telluric vectors, the ad hoc condition
that the same phase deviation must occur in the
two columns of the impedance tensor is added.
The principal model impedance tensor in the coor-
dinate system of the regional strike is then

-a,2,, . e® anZ,.,

7 = 12 y 11 y . (22)
_aZZZny'x' a21an'y' e_ls

In eqn. (22) the phase deviation angle § estab-

lishes an additional model parameter that replaces

the regional skew 7 as shown below. The regional



GEOLOGICAL NOISE IN MAGNETOTELLURIC DATA

strike coincides with a coordinate frame in which
the impedance tensor takes the form of eqn. (22).
This strike angle is found from two conditions for
the two columns of the impedance tensor of eqn.
(22), whereas the two variables a and 8§ are to be
resolved. The following mathematical treatment is
a generalization of the algebra presented in a
previous paper (Bahr, 1988) in which it was a
priori assumed that & = 0.

The condition that in the coordinate frame of
the regional strike the phases of the two elements
in the left column of the impedance tensor differ
by 8 isargZ_..—argZ, =38 or
Re(Z. . ..)cos § +Im(Z . ) sin §

Re( Zy'x')
—Re(Z_ . )sind+1m(Z ) cos 8§

B Im(Z,v’x’) (23)

This condition can be expressed by use of the
modified impedances in eqn. (4). Transformation
of these modified impedances into a new coordi-
nate system which is rotated clockwise by an angle
a yields

D, =D, cos(2a) + S, sin(2a), D, =D,

S, =S, cos(2a) — D, sin(2a), S{ =S, (24)

and therefore

Z.,=S8/+D]/=S8,+D, cos(2a) + S, sin(2a)

and

Z,o=-D;+5]

= —D,+ 8, cos(2a) — D; sin(2a) (25)
With eqn. (25), eqn. (23) becomes
—A sin(2a) + B cos(2a) + C
+ E cos(2a) sin(2a) =0

where

A=A4,+A4,=([S,, D;]1+[S,, D,]) cos &
+({S,, D} +{S,, D,})sin$

B=B,+B,=([S,, S,] - [D,, D,]) cos &
+({S), S;} = {Dy, D,})sin 8

C=C,+C,=([D, S,]-1[S,, D,]) cos &
+({ Dy, $;} — S, Dy})sin 8

E=E,=({S), S}~ {D,, D,})siné (26)

29

where the ‘commutators’ [ ], { } are defined by
eqn. (6). It should be noted that for § = 0 eqn. (26)
becomes the condition used by Bahr (1988) to
estimate the regional strike a from eqn. (11). The
second condition is that in the coordinate frame of
the regional strike the phases of the two elements
in the right-hand column of the impedance tensor
differ by —4é. This yields a relation similar to eqn.
(26):

—A" sin(2a) + B* cos(2a) + C*
+ E* cos(2a) sin(2a) =0

where

A=A, — A,

B*=B, - B,

C'=—-C, + ¢,

Et=F,=F (27)

the terms 4,, B,, C, and A4,, B,, C,, E, being
defined by eqn. (26). From eqns. (26) and (27) the
two unknown parameters a and 8 can be found:
combining eqns. (26) and (27) yields
[ — 4, sin(2a) + B, cos(2a)]
[-C, - E, sin(2a) cos(2a)]

_ S

[—A4, sin(2a) + B, cos(2a)]
=tan 8§ (28)

Assuming that

(B4, + 4,8, + C,E,)’

>4(B,B,— C,(,)(A4,4, — C\G,) (29)
then the solution for « is
tan(2e; ;) =

l (31A2 +Ale + C1E2)
2 (AlAZ— CICZ)

2
+ 16’917!2 7’1B2 61£2)
T3 3
(AlAz_Cxcz)
1,2

_ (Ble - C1C2)

(AIAZ— CICZ) (30)

and & can then be obtained from eqgn. (28). The
subscripts 1 and 2 referring to the two different
signs of the root in eqn. (30) describe two different
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coordinate systems in which the regional skew 7 is
either converted into a minimal phase deviation
angle § or into a maximal phase deviation. For
‘physical’ reasons, the minimal § solution is pre-
ferred, although from a mathematical point of
view both solutions are of the same value.

It should be noted that eqn. (30) yields an
unstable result for the regional strike if the re-
gional 1D indicator p (eqn. (7)) is zero. In that
case, A; = B, = C, =0, no phase differences occur
in the tensor and the simpler model of a regional
1D Earth (eqn. (3)) is again appropriate. Equation
(30) also yields unstable or no results if the re-
gional skew 7 defined by eqn. (12) is zero. In that
case, C; =0, as can be seen from eqns. (12) and
(26), and therefore no phase deviation angle § is
established by eqn. (28). However, in that case, the
regional strike a from eqn. (11), obtained by the
method described by Bahr (1988), is already a
robust straightforward solution.

The application of the ‘ phase deviation’ method
developed in this section must be restricted to
those complicated cases where the regional 1D
indicator p and the regional skew 7 do not vanish.
In these cases, eqn. (30) yields a robust estimate of
the regional strike.

5. A note on the physical and mathematical decom-
position schemes

Other decomposition schemes that do not make
assumptions about the physical model (e.g. the
dimensionality of the conductivity structure), re-
ferred to as ‘mathematical decompositions’ in the
following, have been suggested by Eggers (1982),
Spitz (1985), Cevallos (1986), LaTorraca et al.
(1986) and Yee and Paulson (1987). The relation-
ship between the parameters of these techniques
and the parameters of the decomposition of eqn.
(15) has been investigated by Groom and Bailey
(1990) by use of synthetic data. The main result of
their comparison is that if the true conductivity
structure meets the requirements of the superim-
position model, the principal impedances obtained
by the mathematical decompositions still yield
mixtures of the two regional impedances.

A useful application of the mathematical de-
compositions is, however, restricted to very few
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cases for a second reason. None of these tech-
niques allows for the occurrence of hidden static
shifts which are described by eqns. (14) and (18).
The problem of recognition and removal of static
shifts has been treated by numerous authors. Their
suggestions have included predictions of the dis-
tortion by use of model calculations (Berdichevsky
and Dmitriev, 1976), geoelectrical mapping of the
top layer structure (Kemmerle, 1977), normaliza-
tion of electromagnetic sounding results by use of
spatial Fourier analysis (Berdichevsky and
Zhdanov, 1984), comparison of the magnetotel-
luric impedance with an undistorted magnetic im-
pedance at low frequencies (Larsen, 1977; Bahr
and Filloux, 1989), a combination of the magneto-
telluric method and the magnetovariational
method (Bahr, 1988), and model calculations of
voltage differences instead of telluric fields (Poll et
al., 1989). It must be pointed out clearly that even
the decomposition techniques which are based on
the superimposition model do not solve the prob-
lem of static shifts. They only include a possible
application of one of the static shift removal tech-
niques referred to above on top of the decomposi-
tion by an estimation of the static shift parameter
D’, D" described in eqn. (14), or g, s described in
eqn. (18), respectively. Junge (1988) applied the
comparison technique suggested by Larsen (1977)
and described by Bahr and Filloux (1989) to elec-
tromagnetic fields at six sites in the F.R.G., three
of which were situated in a sedimentary basin. He
found strong departures of D’ and D" from unity
at all sites. In contrast, Bahr and Filloux (1989)
found no distortion, or only moderate distortion,
at ocean-floor MT sites. It must be concluded
that, at least in land magnetotellurics and at low
frequencies, static shifts can occur in almost any
geological environment.

To provide a complete set of formulae for the
evaluation of field data in a later section, two of
the mathematical decomposition methods are
tested. Eggers’ (1982) method yields two principal
impedances:

}\1,2 = (ny - Zyx)/2
Mz, +2.)-2.2,]"

XX yy

—D,/2+ [ D2/4 - det(2)]” (31)
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which are eigenvalues of the impedance tensor.
The term det(Z) is the determinant of Z. A, and
A, are rotationally invariant. If the conductivity
structure of the subsurface is correctly described
by the superimposition model, the principal im-
pedances obtained are

AT, = %(allzx'y' - azzzy’x’)
* %[(allzx'y' + a22Zy'x’)2

1/2
_4a12a2lz.x'y'zy'x']

(32)

In general, they contain mixtures of the regional
impedances as found by Groom and Bailey (1990).
If no local anomaly occurs or if it is 2D in the
(x’, y’) coordinates of the regional strike, then
(a,; =0, a5, =0) and therefore

>\1 =allzx/ >\2=0222y'x' (33)

e
i.e. the regional impedances are obtained cor-
rectly. This is also the case if one of the skew
angles (eqn. (17)) vanishes or if both are small and
therefore

apay =0 (34)

LaTorraca et al. (1986) and Cevallos (1986) first
suggested evaluating the real eigenvalues r,, r, of a
Hermitian tensor that is computed by multiplying
Z by its complex conjugate transpose Z7 *. These
eigenvalues are found from

det(Z"*Z) = r} - r}
trace(Z"*Z) = ri + r} (35)

They provide only rotationally invariant magni-
tudes of the impedance, but no rotationally in-
variant phases as do the eigenvalues eqn. (31) of
Eggers (1982). Equation (35) leads to

rl, = trace(Z7*Z) /2

+ [trace(Z’*Z)2/4 - det(Z’*Z)] i (36)

(Yee and Paulson, 1987). The superimposition
model would yield the eigenvalues

rt,=(D"Z%, +D"*22.)/2
+ [(D'sz/yr + D”zzjx,)z/4

2 2
+ (anay +apan)Z;  Z;

x’y

(37)

]1/2
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where D’ and D" are defined by eqn. (14). r; and
r, are the shifted regional impedances, if the two
skew angles defined by eqn. (13) are identical and
therefore

A/ = —an/an; (38)

This case is treated again in the next section as
‘class 4’ type of telluric distortion.

6. The seven classes of telluric distortion

This section tries to provide a ‘cookbook’ for
the evaluation of measured impedance tensors,
whereby the theoretical concepts which have been
reviewed or developed in the previous sections are
applied. The investigation starts with the simplest
physical model and proceeds to more complex
models until an appropriate model has been found.
It is restricted to the evaluation of MT data at a
single frequency, although the parameters which
are to be calculated might be frequency depen-
dent. For example, the subsurface under a particu-
lar site appears to be 1D for sufficiently high
frequencies. With increasing penetration depth, a
high-conductivity structure in the vicinity of the
site might generate an inductive anomaly. At very
low frequencies, the effect of that structure on the
tensor impedance can be considered to be a
galvanic anomaly (Haak, 1978). An example for
the frequency dependence of the proposed dimen-
sionality parameters is presented in the next sec-
tion.

The tensor impedance is first converted into the
modified impedances given by eqn. (4). If the
skew (eqn. (5)) is small,

k<0.1, (39)

then the tensor impedance is either undistorted—
Cagniard’s (1953) model of a layered half-space
would be appropriate—or it is described by Swift’s
(1967) model.

Class 1: the simple 2D anomaly

A rotationally invariant measure of two-dimen-
sionality is

=(Di+57)/D3 (40)
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If = > 0.1 the conductivity distribution should be
considered to be 2D. Swift’s (1967) method of
determining the strike a may be applied, and after
the coordinate transformation (eqn. (24)) the im-
pedance tensor is of the form

0 V4

ot
Xy

Z, . 0

y'x

Sy + D,
7=

0
s/ -D, 0

(41)

The parameters of the 2D anomaly are the ani-
sotropy

A=Re(Z.,/Z, ) (42)
and the phase difference
8¢ = Im( Zx»yl/Zy/X,) (43)
They constitute a statement on the size of the 2D
anomaly; if
Sp <A, (44)
then this 2D anomaly is purely local.

All ‘higher’ classes deal with cases in which the
skew (eqn. (5)) does not vanish, e.g. ¥ >0.1. In

that case, the test eqn. (7) yields a measure of the
phase differences in the impedance tensor.

Class 2: the purely local 3D anomaly

If that measure does not exceed the relative
error,

p<dD,/D, (45)

or if p < 0.05, Larsen’s (1977) model can be ap-
plied to the impedance tensor (dD,/D, is a rota-
tionally invariant measure of data errors). Then
one phase

¢ =arg(S, — D) (46)
can be computed. The parameter p can therefore
be considered as a measure of regional one-dimen-

sionality. The condition =0 formally yields a
modified skew angle 8 defined by

Re S,/Re D,=1Im S,/Im D,=tan(B) =« (47)

(Bahr, 1988, eqn. (21)).

For an estimation of the true magnitude of the
impedance, additional knowledge of Z, or of the
local conductivity structure is necessary.
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All other classes deal with cases in which neither
the skew (eqn. (5)) nor the phase difference mea-
sure (eqn. (7)) vanish. The application of the test
eqn. (12) provides a measure of whether the super-
imposition model is adequate. Again, the test
parameter, here 7, can be compared with a rota-
tionally invariant measure of the data errors. The
differences between classes 3, 4, 5 and 6 consist
only of the amount of local distortion. For very
small regional skew, e.g. 7 < 0.1, eqn. (11) yields a
reliable regional strike (except for a 90° uncer-
tainty). Otherwise, a more robust scheme such as
eqn. (30) or the solution of the system of equa-
tions (15) after Groom and Bailey (1989) should
be applied. In the coordinate system of the re-
gional strike, the skew angles B, and B, (eqn.
(13)), or alternatively twist and shear (eqn. (17)),
are considered.

Class 3: a regional 2D anomaly with weak local
distortion

This class includes all cases for which
B; <5° and B, <20°
or
B, <5° and B, <20° (48)

Because of eqns. (33) and (34), the eigenvalues of
Eggers (1982) can be considered as scaled regional
impedances.

Class 4: a regional 2D anomaly in rotated coordi-
nates

This class includes cases in which the skew
angles are equal:

Bi=8=8 (49)

and the twist parameter ¢ vanishes, as can be seen
from eqn. (17). In the case of extreme anisotropy,
eg Zy, < Z,,, the phase of one regional im-
pedance can be only roughly estimated and the
class 4 type structure might then be confused with
a class 2 type. In this case, it is sufficient to rotate

the impedance tensor according to

2,=T]Z (50)
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by the angle 8 which was defined for class 2. A
similar modified skew angle has been proposed by
Groom and Bailey (1989, eqn. (39)). Z; will then
belong to class 1 and therefore no decomposition
is necessary. A more likely explanation for the
occurrence of the angle 8 is, however, a malad-
justment of the electrodes with respect to the
magnetometer (Cox et al., 1980).

Class 5: a regional 2D anomaly with strong local
distortion

This class includes all other cases with the
exception of the special case considered under
class 6. Here a decomposition is necessary and the
concepts described in the last two sections should
be applied. Equation (11) or (30) yields the re-
gional strike and eqn. (20) or (21) yields the prin-
cipal phases. It should be noted that eqns. (11)
and (12) provide unstable results if p (cf. eqn. (7))
is very small, in which case class 2 already de-
scribes the impedance tensor correctly. Similarly,
it does not make sense to apply eqn. (30) if 5 1s
very small, e.g. 7 < 0.05.

Class 6: a regional 2D anomaly with strong local
channeling

This class includes the cases where

=B+ B,=90° (51)
Then the shear parameter
e=1 (52)

(Groom and Bailey, 1989). In this case, the direc-
tion of the electric field does not at all depend on
the direction of the magnetic field, except for a
sign change. It can easily be shown that the im-
pedance tensor then takes the form of eqn. (9) in
any coordinate frame, although the phases of the
regional impedances Z,.,, and Z, . will vary
with the orientation of the chosen coordinate sys-
tem. The superimposition model then works well
for all regional strikes and the straightforward
solution (eqn. (11)) for the regional strike becomes
unstable. Correct regional phases can be obtained
if the regional strike is fixed by some a priori
information, e.g. the induction arrows or the re-
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gional strike of neighbouring sites which have less
strong telluric distortion.

Class 7: a regional 3D anomaly

This class includes those cases where
n>0.3

and therefore even the regional conductivity distri-
bution is not 2D. The superimposition model is
not then appropriate. It may, nevertheless, be
tested whether eqn. (30) or the decomposition
method of Groom and Bailey (1989) yields a re-
gional strike that coincides with the regional strike
of neighbouring sites, or that coincides with the
regional strike of the particular site in some other
frequency band. If this is the case, then the re-
gional conductivity structure can be considered to
be approximately 2D.

7. An example from the German deep drilling site:
the frequency dependence of skew parameters

In 1986, Metronix-Geometra carried out mag-
netotelluric measurements in the target area of the
German deep drilling site in the Oberpfalz, Bavaria
(Fig. 1). Details of field procedures and data
processing have been given by Jensen et al. (1988).
Figure 2 shows the period dependence of the skew
parameters k (eqn. (5)) and 5 (eqn. (12)) of site
002, situated at the place of the 1987 pilot hole.
Also displayed are the real part of the induction
arrow, the regional strike (eqn. (11)) and the pre-
ferred direction of the telluric field, for six peri-
ods. The length values refer to the real part of the
Schmucker inductive scale length C = Z/iw.

At the highest frequencies (300 Hz), the con-
ductivity distribution can be considered to be 2D
with a north—south strike, as is obvious from the
eastward-directed induction arrows. At frequen-
cies around 30 Hz, n = 0.25 and x = 0.5. There-
fore, the regional conductivity distribution in a
2 km range is approximately 2D with even smaller
embedded anomalies. Therefore site 2 now be-
longs to class 5. The NW-SE regional strike in
this frequency band is probably caused by a steep
graphitized cataclasite zone. These graphites cause,
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Fig. 1. Field sites 2, 6, 13, 15 and 17 in the vicinity of the German deep drilling project KTB in the Oberpfalz, Bavaria. The
NW-SE-striking amphibolite surface petrology between Erbendorf and Vohenstrauss is referred to as ‘ Zone Erbendorf—Vohenstrauss’

(ZEV).

in addition to a conductivity anomaly, a large
self-potential anomaly (Haak et al., 1991).

In the period range 0.3-3 s, the inductive scale
length is in the 6-13 km range, and the impedance
tensor belongs to class 7 as 1 > 0.4; the regional
conductivity distribution is thus 3D. From the
SW-NE direction of the induction arrows as well
as from the extension of this structure—visible in
the inductive scale length—it can be concluded
that this regional conductivity structure is the
‘Zone Erbendorf-Vohenstrauss’ (ZEV) (see Fig.
1).

At the longest periods, this site belongs to class
5 again; the induction arrows as well as the mag-

netotelluric regional strike indicate a large-scale
east—west-striking structure. It has been found
previously with electromagnetic methods (Berktold
and Regner, 1984). Nevertheless, the local telluric
strike in this low-frequency band serves as a
‘frozen’ measure of the strike of the induction
anomaly in the 0.3-3 s period range.

This leads to an important conclusion: the tel-
luric distortion at long periods is caused by a
conductivity structure which is not really ‘local’
but is of small dimensions (6-13 km) if compared
with the inductive scale length at these long
periods (60 km). At very short periods this struc-
ture is not seen in the impedance tensor. There-
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Fig. 2. Skew parameters « and 7 for site 2 (see Fig. 1). ‘Regional’ strike refers to an angle computed by use of eqn. (11) and (at long
periods) eqn. (30), whereas ‘local’ strike refers to an angle obtained by Swift’s (1967) rotation analysis. Together with these strike
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fore, the classifications ‘local’ and ‘regional’ which
are used throughout this paper as well as in earlier
contributions (Bahr, 1988; Groom and Bailey,
1989) make sense only for a particular period
range. A more general study on the relationship
between the period range and the depth of investi-
gation has recently been presented by Spies (1989).

Figure 3 shows the long-period phases of the
regional impedances for five sites in the vicinity of
the German deep drilling site. The maximum dis-
tance between two sites was 3 km (see Fig. 1);
therefore the regional phases of all sites could be
expected to be similar at long periods. Sites 2 and
15 belong to class 5, sites 13 and 17 belong to
class 6, and site 6 belongs to class 7. At all sites,
large induction arrows pointing towards the south
indicate a strong east—west-striking conductivity
contrast (Jensen et al., 1988). Figure 3a shows the
phases ¢, . and ¢, -, obtained with the conven-
tional method of strike determination. They vary
strongly from site to site and the zero phase ¢,/
cannot be interpreted. Figure 3b shows the phases
computed from eqn. (21) in a regional strike direc-

tion that was obtained from eqn. (12) for site 15
or from eqn. (30) for sites 2 and 6. Thereby a
regional strike in the range —20° to 0° was
found. For computations of the phases of sites 13
and 15, the regional strike was fixed at a =0.
Although the regional phases of these five sites
still scatter slightly, as a result of gross data errors,
clearly a decoupling of the two branches belong-
ing to the two telluric vectors is observable. The
occurrence of two phases can be interpreted by a
2D east—west-striking conductivity structure,
which, in turn, is responsible also for the large
induction arrows.

8. Conclusion

There are many types of distortion of telluric
fields by near-surface conductivity anomalies, and
they may occur in different environments of re-
gional conductivity distribution. Probably no
simple formula exists that can be applied in all
cases to separate local and regional contributions
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Fig. 3. (a) Long-period phases for five sites obtained in rotated coordinates using Swift’s (1967) rotation analysis. (b) Long-period
‘regional’ phases obtained by use of eqn. (21). For further explanation, see text.

to a measured impedance tensor and to obtain
parameters which correctly describe near-surface
or regional conductivity structures.

Consequently, this paper describes dimen-
sionality parameters which may be used to check
whether a particular magnetotelluric tensor may
be described by some general physical model, e.g.
a 1D Earth covered by a purely local 3D structure.
These parameters refer to a series of models that

incorporate an increasing complexity of the gen-
eral resistivity distribution:

(1) a 1D Earth;

(2) a 2D Earth;

(3) a 1D Earth with an overlying 3D structure
(Larsen, 1977);

(4) the superimposition of a 2D Earth and a surfi-
cial 3D structure (Bahr, 1988; Groom and Bailey,
1989);
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(5) a general model that allows for moderate devi-
ation of the regional structure from the purely 2D
case.

In the last, most complicated, model, the solu-
tion for the strike of the regional structure is
stabilized by introducing an additional ‘phase de-
viation’ angle. The phase difference between two
elements in the same column of the impedance
tensor should be zero in the original superimposi-
tion model but is now a measure of regional skew,
1.e. of the amount of deviation from the regional
2D case.

The dimensionality parameters for the more
complex models (e.g. regional skew) as well as the
model parameters then derived for these models
(e.g. regional strike) become unstable if a mea-
sured impedance tensor already meets the require-
ments of a previous (less complex) general model.
For example, the application of the superimposi-
tion model (Bahr, 1988; Groom and Bailey, 1989)
does not yield reliable results if the magnetotel-
luric tensor is described correctly by the less com-
plex Larsen (1977) model. In that case, all of its
elements have the same phase, and methods which
require two phases in the magnetotelluric tensor
will fail. It is therefore recommended that these
complexity tests are applied successively, starting
with the less complex general models.

The application of the most complicated de-
composition methods to field data from the Ger-
man deep drilling site has indicated a large east—
west-striking conductivity anomaly under the Ob-
erpfalz, Bavaria. This anomaly is also observable
in the anomalous magnetic fields. To recover its
parameters, e.g. regional phases from electric field
measurements, a tensor decomposition 1s neces-
sary.
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