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ABSTRACT

Sea surface elevation and bottom pressure anomalies due to thermohaline forcing are examined through
analytical and numerical models, including Boussinesq and non-Boussinesq models. It is shown that Boussinesq
approximations can introduce noticeable errors, depending on the spatial and temporal scales of the perturbations.
According to the theory of geostrophic adjustment, when the initial perturbations have horizontal scales com-
parable to the barotropic radius of deformation, the initial pressure perturbations will be basically retained
through the adjustment. On the other hand, if the initial perturbations have horizontal scales much smaller than
the barotropic radius of deformation, the initial pressure perturbations will be largely lost. Precipitation has
horizontal scales on the order of 10–100 km, much smaller than the barotropic radius of deformation. Thus, for
timescales longer than days, the contribution from individual precipitation events to the local free surface elevation
and bottom pressure is small and is difficult to identify from satellite data. On the other hand, thermal forcing
has horizontal scales comparable to the barotropic radius of deformation, so its long-term contribution to sea
surface height anomaly is noticeable and is easily identified from satellite data. Because Boussinesq models
induce faulty sea surface height and bottom pressure signals, the errors introduced by these models are noticeable
for anomalies in large-scale [O(1000 km)] thermohaline forcing.

1. Introduction

Boussinesq (1903) first introduced certain approxi-
mations that have been widely used in oceanic circu-
lation models. The Boussinesq approximations can be
summarized by two points. 1) The fluctuations of den-
sity are primarily due to thermohaline effects (Boussi-
nesq’s original study was focused on the contribution
due to thermal forcing, as opposed to pressure; however,
this assumption has been extended to include also the
dynamic effect of salinity). 2) In the momentum and
mass conservation equations, density variations may be
neglected, except in the terms associated with buoyancy
force. Thus, most existing numerical circulation models
use volume conservation to replace mass conservation
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and use a fixed-value reference density to replace in situ
density in the horizontal momentum equations.

The applicability of the Boussinesq approximations
to fluid dynamics has been discussed in many papers.
Spiegel and Veronis (1960) discussed the case for po-
lytropic gases, and its application to liquids has been
discussed by many other authors, such as Mihaljan
(1962), Zeytounian (1989), and Bois (1991). Most of
these studies have been based on nonrotating fluid; the
possible dynamic effect of rotation has not been studied
thoroughly.

In this study, we will emphasize that the errors in the
oceanic circulation induced by Boussinesq approxima-
tions vary greatly, depending on the spatial and temporal
scales of perturbations. In actuality, in the ocean both
the sea level and bottom pressure may go through geo-
strophic adjustment processes that are very different in
comparison with a Boussinesq ocean.

In the ocean, for example, the sea level increases in
direct response to local heating, but there is no initial
perturbation in bottom pressure. On the other hand, in
a Boussinesq ocean, surface heating induces a loss of
mass (thus, a negative bottom pressure signal), with no
immediate increase in sea level. Because most existing



2132 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

oceanic general circulation models are based on the
Boussinesq approximations, the main concern is focused
on the sea surface elevation and bottom pressure cal-
culated from these models. To overcome this difficulty
of nonconservation of mass associated with these mod-
els, a globally uniform adjustment of sea surface is need-
ed (Greatbatch 1994). In a similar way, a correction is
needed for the bottom pressure (Ponte 1999). Such glob-
al corrections have been used in many studies based on
Boussinesq models, for example, Mellor and Ezer
(1995) and Dukowicz (1997).

Greatbatch (1994) neglected the contribution due to
local expansion of the water column, the Q9 term in his
Eq. (19); thus, his discussion is mostly limited to the
global-mean sea level change but ignores the spatial
variability in sea surface elevation and velocity. Du-
kowicz (1997) made an effort to improve the steric sea
level calculation in the Los Alamos Parallel Ocean Pro-
gram (POP) model. Although his modified model in-
cludes corrections to sea surface elevation and baro-
clinic velocity, such a correction does not deliver a com-
plete correction. Because the tracer equations are based
on a constant reference density, density conservation is
not exact, so the model is not strictly mass conserving.
Furthermore, the fixed-value reference density is used
in both the horizontal momentum equations. Therefore,
the model is not truly non-Boussinesq. Mellor and Ezer
(1995) presented a non-Boussinesq model in sigma co-
ordinates. By comparing experiments with idealized
heating and cooling, they came to the conclusion that
the differences between the non-Boussinesq and Bous-
sinesq models are minor, when the latter was corrected
by a spatially uniform, time-dependent factor calculated
from the volume-averaged density change. They did not,
however, compare the results from the two models driv-
en by realistic data.

As will be shown in this study, however, the globally
uniform correction to the sea surface elevation and bot-
tom pressure may not provide an accurate description
of the temporal and spatial evolution of sea surface and
bottom pressure. The errors are introduced whenever
density changes, because the Boussinesq approxima-
tions induce a faulty source of mass and pressure per-
turbations. The geostrophic adjustment in the ocean is
a nonlinear process that involves complicated nonlinear
interactions between mass, pressure, and velocity fields.
Thus, to understand the dynamic effects induced by the
density anomaly it is important to simulate the whole
adjustment process accurately.

In this study we will first formulate the basic equa-
tions used in our numerical simulation and analysis in
section 2. The estimate of the potential errors introduced
by the Boussinesq approximations, using geostrophic
scaling, is presented in section 3. The differences be-
tween the Boussinesq models and the compressible
models are examined using the theory of geostrophic
adjustment in section 4; these results are compared with

the results from numerical experiments in section 5.
Conclusions are drawn in section 6.

2. Basic equations

a. A pressure coordinates oceanic model

In this study we will compare the results from the-
oretical analysis and numerical experiments that were
obtained from the Pressure Coordinates Oceanic Model
(PCOM) that is based on pressure-s coordinates, which
are defined as

p 2 pts 5 , p 5 p 2 p ,bt b tpbt

where pb is the bottom pressure and pt is the atmospheric
pressure at the sea surface, so s 5 0 at sea surface and
s 5 1 at the bottom. The pressure-s coordinate is a
vertical coordinate scaled by the bottom pressure, so the
model is basically a terrain-following model.

The advantage of using pressure coordinates is that
the mass conservation equation in pressure coordinates
has a simple form resembling that for an incompressible
fluid, so a model exactly conserving mass is relatively
easy to build. The details of the model formulation can
be found in a separate publication by Huang et al.
(2001), and a concise description of this model is in-
cluded here. The main features of the model include 1)
exact mass conservation; 2) use of the in situ density
r, instead of r0 (a fixed-value reference density), in the
horizontal momentum equations and the prognostic
equations for the tracers; and 3) use of the accurate
equation of state—thus, density is calculated using r 5
r(u, S, P), where u is potential temperature, S is salinity,
and P is pressure.

The numerical calculation is carried out in double
precision. The prognostic equations in spherical coor-
dinates are

Ïp]U ]f 1 ]pbt
1 M (U ) 5 f *V 2 11 2]t a cosw ]l r ]l

1 Ïp D ,bt u

Ïp]V ]f 1 ]pbt
1 M (V ) 5 2 f *U 2 11 2]t a ]u r ]u

1 Ïp D ,bt y

]pbt 1 L (p ) 5 0,bt]t

]p ubt 1 L (p u ) 5 p Q ,bt bt u]t

]p Sbt 1 L (p S) 5 p Q ,bt bt S]t

where f* 5 2V sinw 1 u tanw/a is the apparent Coriolis
parameter; (U, V) 5 ( u, y) are the pressure-Ïp Ïpbt bt
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TABLE 1. Differences between a mass-conserving model (PCOM) and the Boussinesq Compromised Ocean Model (BCOM).

PCOM BCOM Error bound in BCOM

Continuity equation
Dr

1 r= · u 5 0
Dt

= · u 5 0 1%

Momentum equations
Du 1 ]p

5 f *y 2 1 DuDt ar cosw ]l

Du 1 ]p
5 f *y 2 1 DuDt ar cosw ]l0

1%–2%

Tracer equations
Dru

1 = · (ruu ) 5 QuDt

Dr u0 1 = · (r uu ) 5 Q0 uDt
1%

Equation of state r 5 r (u, S, P) r 5 r (u, S, r gh)0 0.1%

weighted horizontal velocities; M and L are the advec-
tion operators

1 ]um m ]u ]y coswm m ]y cosw
M (m) 5 2 1 21 2a cosw ]l 2 ]l ]u 2 ]u

]ṡm m ]ṡ
1 21 2]s 2 ]s

1 ]mu ]my cosw ]mṡ
L (m) 5 1 1 ;1 2a cosw ]l ]u ]s

and Du, Dy , Qu, and QS represent turbulent viscosity and
mixing.

The geopotential height is calculated based on the
hydrostatic approximation:

1 pbtf 5 gz 1 ds,b E r
s

where zb is the sea floor and the in situ density is cal-
culated using the new version of the equation of state
r 5 r(u, S, p), where u is the potential temperature
(Jackett and McDougall 1995).

The boundary conditions include the following: At
all sidewalls and the bottom, the velocity is zero, and
there is no heat or salt flux. At the free surface (s 5
0), the kinematic boundary conditions are

2r g ]u
p ṡ 5 2r g(e 2 p) and A 5 2t,bt f yp ]sbt

where (e 2 p) is the rate of evaporation minus precip-
itation combined with river runoff, rf is the density of
freshwater; and t represents wind stress. The turbulent
mixing for temperature at the sea surface is

2r g ]u Fhk 5 2 ,yp ]s Cbt p

where ky is the vertical diffusivity, Fh is the air–sea heat
flux and Cp is the heat capacity of seawater. The natural
boundary condition for salinity (Huang 1993) is that the
turbulent salt flux is exactly canceled by the salt ad-
vection:

2r g ]S
k 5 2S r (e 2 p),y s fp ]sbt

where Ss is salinity in the upper layer, and the freshwater

from precipitation minus evaporation enters the ocean
as a mass flux through the continuity equation.

b. A Boussinesq compromised oceanic model

To see the errors introduced by the Boussinesq ap-
proximations, we construct a second model called
BCOM (Boussinesq Compromised Oceanic Model).
The details of the model formulation can be found in a
separate publication by Huang et al. (2001). This model
is based on the traditional Boussinesq approximations
and sigma coordinates; it has almost the identical coding
structure as PCOM, except for some minimal changes
listed in Table 1.

c. Sea surface elevation in a compressible ocean
model

The mass conservation law is

]u ]y ]w 1 Dr Du DS Dp
1 1 5 2 5 a 2 b 2 g , (1)

]x ]y ]z r Dt Dt Dt Dt

where a 5 2(1/r)(]r/]u) | s,p and b 5 (1/r)(]r/]S) | u,p

are the heat expansion and salt contraction coefficients
and g 5 1/(r ) where cs is the speed of sound. The2cs

surface boundary conditions have been discussed in pre-
vious studies, for example, Wolfgang (1973) and Huang
(1993):

r]h f
w 5 1 u · =h 1 (e 2 p) ;

]t rs

]u ask 2 k = u · =h 5 F ;y h h H]z r Cs p

r]S f
k 2 k = S · =h 5 (e 2 p) S ;y h h s]z rs

where rs is the sea surface density and FH is the sea
surface heat flux. The lower boundary conditions are

w 5 2u · =H;

]u
k 2 k = u · =(2H ) 5 0;y y h]z

]S
k 2 k = S · =(2H ) 5 0.y y h]z
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Using the vertical boundary conditions, integrating
Eq. (1) leads to

h h r]h ] ] f
5 2 u dz 1 y dz 2 (e 2 p)E E1 2]t ]x ]y rs2H 2H

h Du DS Dp
1 a 2 b 2 g dz.E 1 2Dt Dt Dt

2H

The salinity term is

h h hDS ]S
b dz 5 b k dz 1 b= · (k = S) dzE E y E h h h1 2Dt ]z

2H 2H 2H

hrf
5 (e 2 p) b S 1 = · bk = S dzs s h E h hrs 2H

2 CABS,

where CABS represents the cabbeling effect:
h h]S ]b

CABS 5 k dz 1 k = S · = b dz.E y E h h h]z ]z
2H 2H

In a similar way, we have
h hDu asa dz 5 F 1 = · k = u dz 1 CABT,E H h E h hDt r cs ph 2H

and
h h]u ]a

CABT 5 2 k dz 2 k = u · = a dz.E y E h h h]z ]z
2H 2H

If we neglect the small correction term due to pressure
changes, the free surface elevation equation is

h h]h ] ]
5 2 u dz 1 y dz 2 (e 2 p)E E1 2]t ]x ]y

2H 2H

has1 F 1 = · k = u dzH h E h hr cs p 2H

h

2 = · bk = S dz 1 CABT 1 CABS. (2)h E h h

2H

The pressure term
h h h hDp D Dptg dz 5 g rg dz dz 1 g dzE E E EDt Dt Dt

2h 2H z 2H

h h]h Dr
ù gg r 2 rw 1 dz dzE s E1 2]t Dt

2H z

Dpt1 g(h 1 H )
Dt

hDr ]h 1 Dr 1 Dptù 1 dz 1 ,E1 2r ]t r Dt r g Dt0 02H

where Dr/r0 5 g(h 1 H)r0g ø (rb 2 rs)/r0 ø 3%

(r0 is the fixed-value reference density), and the vertical
integration of the w term is discarded because it is far
less than the h term. In addition,

h h hDr Dr
gg dz dz 5 gg (z 1 H ) dzE E EDt Dt

2H z 2H

hDr 1 Dr
ø dz.Er r Dt0 2H

Last we have

h h]h ] ] Dr
5 2 u dz 1 y dz 1 (e 2 p) 1 2E E 1 2[ ]]t ]x ]y r02H 2H

has1 F 1 = · k = u dzH h E h hr cs p 2H

h

2 = · bk = S dz 1 CABT 1 CABSh E h h

2H

Dr Dpt2 .
2r g Dt0

(3)

3. Errors introduced by the Boussinesq
approximations

To determine the errors introduced by the Boussinesq
approximations, we estimate the possible errors by geo-
strophic scaling. First, we begin with the errors intro-
duced in the mass conservation equation by the volume
conservation approximation. Using the geostrophic ap-
proximation for global scales, the density field can be
nondimensionalized as r 5 r0 1 [(r0fUL)/(gD)]r9,
where r0 is the fixed-value reference density, f is the
Coriolis parameter, U is the velocity, L and D are the
horizontal and vertical length scales, and r9 is the non-
dimensional density. The continuity equation can be re-
duced to the following nondimensional form (Pedlosky
1987):

Dr9
R F 1 (1 1 R Fr9)=9 · u9 5 0, (4)o oDt9

where Ro 5 U/( fL) is the Rossby number and F 5
( f 2L2)/(gD), t9 5 tU/L, =9 5 =/L, and u9 5 u/U is the
nondimensional velocity. If RoF is extremely small or
equal to zero, the assumption of volume conservation
is a good approximation. On the other hand, if RoF is
not very small, the errors introduced by the volume
conservation approximation are not negligible. Because
RoF 5 (UfL)/(gD), we expect that the errors introduced
by neglecting the density change terms will be large
when

1) U is large—fast current, such as the Gulf Stream or
the Antarctic Circumpolar Current;

2) f is large—at high latitudes;
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3) L is large—large-scale phenomena, such as heating
or cooling over a large portion of the ocean; or

4) D is small—where the motion is confined to a rel-
atively thin layer in the upper ocean.

As an example, we apply this estimate for global-
scale motion, so L 5 r0 5 6400 km is the radius of the
earth and f 5 2V (V is the angular velocity of the
earth’s rotation). Assuming the horizontal velocity scale
of U 5 10 cm s21 and the depth scale of the motion D
5 800 m, we have Ro ø 1024 and F ø 100; thus,
replacing the mass conservation with the volume con-
servation can introduce errors of about 1%.

Second, the errors introduced by replacing the in situ
density with the fixed-value reference density in the
horizontal momentum equations are about 1%–2% be-
cause the range of in situ density variation in the ocean
is about 3%.

Note that the above estimate is for the instantaneous
errors only. Because these errors are not random, they
can accumulate and lead to much larger errors after a
long-time integration of the models.

In this study, we will focus primarily on the free
surface elevation and bottom pressure, although errors
also appear in other dynamic variables, such as hori-
zontal velocity. The time evolution of sea surface ele-
vation (compressibility terms are neglected here) is de-
scribed by Eq. (2). Thus, the time evolution of surface
elevation is controlled by

1) divergence of the barotropic velocity, the first term
on the right-hand side;

2) evaporation minus precipitation, the e 2 p term;
3) surface heating, the FH term; and
4) cabbeling, the remaining terms.

Although in this equation these contributions are list-
ed separately, the long-time contribution to the sea sur-
face elevation from individual terms at a fixed location
is not obvious. In fact, sea surface elevation is controlled
by the complicated nonlinear dynamic processes, in
which all these factors combine. As a result, for time-
scales longer than days, the sea surface elevation at a
given station due to these forcing terms cannot be simply
inferred from this equation. For example, as the solution
approaches a quasi equilibrium, the time rate of the sea
surface elevation vanishes, and there are no other terms
in this equation that can be used for predicting the sea
surface elevation at a steady state. Thus, it is important
to examine the contributions from all terms in this equa-
tion to understand the time evolution of the sea surface
elevation. In particular, the barotropic velocity conver-
gence term leads to lateral mass exchanges and thus
plays an important role in setting up the sea surface
elevation. In accord, sea surface elevation changes on
longer timescales are directly related to the geostrophic
adjustment processes, which will be discussed shortly.

Although many studies have been focused on the sea
surface elevation obtained from either numerical models

or satellite observations, there are few theoretical anal-
yses devoted to the evolution of sea surface elevation
on long timescales. For example, Greatbatch (1994)
gave a concise analysis for sea level changes diagnosed
from Boussinesq models, and his argument has been
cited as the theoretical background in many studies re-
lated to sea surface elevation changes diagnosed from
satellite data. Greatbatch estimated that the contribution
to sea level increase from evaporation minus precipi-
tation is much larger than that from thermal forcing.
However, sea surface elevation anomalies identified
from satellite data often show a strong relation between
the thermal forcing anomalies, but they seldom show
any contribution from local evaporation minus precip-
itation. The reason for this apparent contradiction will
explained in the next section.

The time evolution of bottom pressure is

h h]p ]p ] ]b t5 2 rgu dz 1 rgy dzE E1 2]t ]t ]x ]y
2H 2H

2 (e 2 p)r g. (5)f

Thus, the time evolution of bottom pressure is controlled
by

1) changes in the sea surface atmospheric pressure,
2) convergence of mass in the water column, and
3) local evaporation minus precipitation.

Similar to the dynamic processes controlling the sea
surface elevation, these three factors combine through
nonlinear dynamic processes and affect the time evo-
lution of the bottom pressure at a given location. For
timescales longer than days, the impact of local atmo-
spheric pressure and evaporation minus precipitation is
transformed through the geostrophic adjustment involv-
ing the current on much larger scales. Thus, the local
bottom pressure signal left after geostrophic adjustment
cannot be simply inferred from the individual contrib-
utors.

For the Boussinesq ocean, however, the bottom pres-
sure equation becomes

h h]p ]p ] ]b t5 2 r g u dz 1 y dz0 E E1 2]t ]t ]x ]y
2H 2H

h ]r
2 (e 2 p)r g 1 g dz. (6)f E ]t

2H

In comparison with the non-Boussinesq ocean, it adds
source/sink terms due to change in density. As a result,
the basin-integrated bottom pressure anomaly becomes
negative (positive) when the basin is warming up (cool-
ing down). To correct for the missing physics, a sim-
plified approach is to make a correction to the bottom
pressure at each time step, using the averaged density
changes over the global ocean, that is, (g/
A) (Ponte 1999).# (]r/]t) dVV

Thus, a simple way to mend the errors introduced to
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Boussinesq models is to compensate the total mass loss
from heating and spread the loss of mass uniformly over
the whole ocean (e.g., Greatbatch 1994; Ponte 1999).
Note that the correction proposed by Greatbatch (1994)
was originally intended for a quasi–steady state solution
only, but it is now widely used for the time evolution
of sea surface elevation, bottom pressure (Ponte 1999),
and angular momentum of the oceans (Bryan 1997).
The reason for applying this correction to these time-
dependent problems is that, without such a correction,
changes in sea surface elevation, bottom pressure, and
angular momentum calculated from the Boussinesq
models are almost meaningless because they are so se-
verely contaminated with faulty signals due to the lack
of mass conservation. Thus, in our study, all results
obtained from the Boussinesq model (BCOM) will be
subject to such a correction.

With the assumption that the global-integrated evap-
oration minus precipitation rate is zero, the global-mean
bottom pressure correction is

1
dp 5 dp dx dy, (7)b EE bA A

where A is the total area of the model ocean and dpb 5
pb 2 is the bottom pressure deviation from the initial0pb

value . The free surface elevation and bottom pressure,0pb

including the correction, for BCOM are

1
h 5 h 2 dp , (8)0 br g0

p 5 p 2 dp . (9)b b,0 b

As discussed above, the spatially uniform correction
may not always yield the right solutions when the scale
of the perturbations is comparable to the barotropic ra-
dius of deformation.

4. Geostrophic adjustment in simple analytical
models

a. The effect of surface heating and cooling

Density changes are associated with thermohaline
forcing at the boundaries and mixing in the interior. In
the ocean, sea surface elevation increases in response
to heating, but in a Boussinesq ocean it remains un-
changed initially. The initial profiles of pressure per-
turbation are different for these two ocean models (Fig.
1). In a compressible ocean there is a baroclinic pressure
anomaly within the surface layer, but there is no pressure
perturbation below the top layer. On the other hand, in
a Boussinesq ocean there is a barotropic pressure anom-
aly; that is, the pressure anomaly linearly increases
downward within the top layer, and it is constant below
the top layer. As noted by a reviewer, it is interesting
to note that the Boussinesq approximations interchange
the roles of bottom pressure (a measure of mass) and
surface elevation (a measure of volume), and this mis-

interpretation of the physics is the root of the errors
introduced in the Boussinesq models.

The pressure perturbations in these two models drive
anomalous currents, thus initializing the adjustment pro-
cesses. If there is no rotation, that is, f 5 0, the velocity
change is controlled by the pressure gradient and fric-
tion. With the assumption of weak friction, the current
is controlled by the pressure gradient. In the final state
the light water will be uniformly spread over the entire
basin, resulting in a basinwide uniform stratification.
The difference between these two models is very small.

For rotating fluids, the adjustment processes are dif-
ferent from those in nonrotating fluids because of the
Coriolis force. Now the balance in the momentum equa-
tion is between the acceleration term, the Coriolis force,
the pressure gradient force, and the frictional force. For
large-scale motion, friction is negligible, and the Cor-
iolis term and the pressure term are the most important
terms, dominating the evolution of the adjustment.

The geostrophic adjustment processes can be illus-
trated by the cartoons in Fig. 1. When water in the upper
layer of a compressible ocean is heated from above, the
free surface is moved upward, indicated by a slightly
higher level in the middle of Fig. 1a, while the sea
surface in the environment is unperturbed. The sea sur-
face height anomaly creates a horizontal pressure gra-
dient field. Over the depth of a water column within
this patch of water, there is a positive pressure pertur-
bation in the upper layer, with no pressure perturbation
in the layer below because total mass does not change
initially; see the solid line in Fig. 1c. Driven by the high
pressure, the light water spreads outward. However, the
Coriolis force turns this outward flow into an anticy-
clonic circulation in the upper layer (Fig. 1a). As the
upper layer loses water, the sea level within the heated
area declines slightly. A negative pressure anomaly ap-
pears in the layer below, which drives an inward flow
and induces a cyclonic circulation (Fig. 1b). The pres-
sure perturbation profile in the final state is depicted by
the dotted line in Fig. 1c.

For a Boussinesq model, the adjustment processes
take a different route. After the initial heating, the sea
level remains unchanged because of the assumption of
volume conservation, so the sea level remains flat ev-
erywhere (Fig. 1d). Since density for water in the upper
box declines because of heating, there is an artificial
loss of mass in the water column subject to heating. As
a result, there is a negative pressure perturbation below
the sea surface, and the pressure profile right after heat-
ing is indicated by the solid line in Fig. 1f. This pressure
anomaly drives an inward flow within the whole water
column and induces a cyclonic circulation (Fig. 1d). The
inward flow raises the sea level within the heating area
and thus increases the pressure within the whole water
column. As a result, the subsurface pressure perturbation
in the heating area becomes positive; see the dotted line
in Fig. 1f. This positive pressure perturbation drives an
outward flow in the upper layer and creates an anticy-
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FIG. 1. Sketch of geostrophic adjustment in response to surface heating.

clonic circulation in the upper layer (Fig. 1e). Although
these two models behave differently, they share the same
property that the Coriolis force prevents the complete
collapse of the initial pressure perturbations.

As an example, we analyze the following idealized
case with surface heating on a water column (lower
panel of Fig. 1). In a Boussinesq model there is a neg-
ative bottom pressure signal created during the heating,
D 5 ghdr , 0. If it is assumed that in the area of0pb

heating there is a residual bottom pressure signal, D 0pb

, Dpb , 0, left after the geostrophic adjustment, we
have

(H 1 dh9)r 5 (r 1 dr)h 1 (H 1 dh 2 h)r 2 Dp /g,0 0 0 b

where H is the constant depth of the model ocean and dr
, 0 is the density change from heating. This leads to

h(dr/r ) 5 dh9 2 dh 1 Dp /(gr ).0 b 0
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From mass conservation used in Boussinesq models,

A dh 1 (A 2 A )dh9 5 0,0 0

where A is the total area of the model basin and A0 is
the area of the perturbed water column. From these
equations we obtain the following relations:

A dr Dp0 bdh 5 1 2 2h 1 . 0,1 21 2A r gr0 0

A dr Dp0 bdh9 5 h 2 , 0.1 2A r gr0 0

The difference in free surface elevation between the
heated water column and the environment is

dr Dpbdh 2 dh9 5 2h 1 .
r gr0 0

As discussed before, whether the initial bottom pres-
sure signal will persist through geostrophic adjustment
depends on the initial horizontal scale relative to the
barotropic radius of deformation and the scale of the
model basin (factor A0/A). For the case of small hori-
zontal scale, there is very little bottom pressure signal
left after the geostrophic adjustment, Dpb ø 0, so the
free surface elevation difference between the perturbed
water column and the unperturbed environment would
be the same as in a compressible model. In such a case,
the global correction of bottom pressure would produce
the same free surface elevation as in a compressible
model.

On the other hand, if the horizontal scale of heating
is on the order of the radius of deformation, part of the
initial bottom pressure will persist that is, (Dpb)/(gr0)
, 0; thus, the results from the Boussinesq models and
the compressible model differ.

The difference between the Boussinesq models and
the compressible model is controlled by the dispersion
of bottom pressure signals through Rossby waves during
the geostrophic adjustment. Any dynamic processes that
prevent the dispersion of Rossby waves can help to
maintain the difference between these two types of mod-
els: 1) large horizontal scale of the initial perturbations;
2) lateral boundary; 3) strong current, such as the Gulf
Stream or the Antarctic Circumpolar Current, through
wave–current interaction; or 4) large-scale topography,
through waves–topography interaction.

However, such phenomena are complicated, and they
are left for further study. In the discussion below, we
will show a case in which the dynamic role of both the
large horizontal scale and the lateral boundary come
into play, so that the difference between a Boussinesq
model and a compressible model is noticeable, even
though the global correction has been applied to the
results.

The physical processes discussed above can be quan-
tified using analytical models. A most concise way of
describing the geostrophic adjustment process is to seek

an analytical description of the initial state and the final
state after the completion of the adjustment. Geostrophic
adjustment has been a classic topic of study. In his sem-
inal paper, Rossby (1938) concluded that the pressure
field adjusted toward the velocity field. However, further
studies indicated that both the velocity and pressure
fields adjust, depending on the initial horizontal scale
of the perturbations. For example, Yeh (1957) studied
the analytical solutions of the geostrophic adjustment
and pointed out that the direction of geostrophic ad-
justment depends on the initial horizontal scale, in com-
parison with the radius of deformation. If the initial
perturbation has a small horizontal scale, wave pro-
cesses can disperse the energy within a timescale shorter
than 1/ f . Within such a short time, the vorticity field
(or the velocity field) remains basically unchanged;
however, the pressure field is altered to be in geostrophic
balance with the velocity. On the other hand, if the initial
horizontal scale is large, the adjustment processes take
a much longer time, so a new velocity field is established
that is in balance with the pressure gradient, and changes
in the pressure field stop. As a result, the initial pressure
perturbations can mostly remain unchanged.

Thus, in terms of the adjustment processes there are
major differences between rotating fluids and nonrotat-
ing fluids. The existence of the Coriolis force preserves
the pressure perturbations created by thermohaline forc-
ing or mixing, and the degree of preservation of the
initial pressure perturbations depends on the horizontal
scale of the initial pressure perturbation as discussed
below. For density perturbations due to thermohaline
forcing in a one-dimensional, two-layer model on an f
plane, the final state of the geostrophic adjustment can
be solved in closed analytical form. The description of
the analytical solution is included in the appendix. Note
that although the analytical solutions are for cases with
simple geometry on the f plane, they provide a solid
benchmark for the numerical models.

The scalar selection of the geostrophic adjustment due
to heating can be illustrated using a simple model in
which the heating anomaly is initially confined to a finite
domain with a radius of r0. Assume the model ocean
consists of an upper layer of 100 m and a second layer
of 1000 m. After heating, the upper-layer density is
reduced, so the density ratio is g 5 r1/r2 5 0.99, and
the layer-thickness ratio is k 5 10. The solutions from
the compressible model (PCOM) are shown in the left
panels of Fig. 2, where the horizontal axis is in units
of the barotropic radius of deformation Rb. The solutions
from the Boussinesq model (BCOM) are shown in the
right-hand panels of Fig. 2. (Although the results pre-
sented here were obtained from analytical models with
two layers, for simplicity we will use PCOM and BCOM
to label them because the same solutions can be obtained
from PCOM and BCOM.)

Note that when the nondimensional radius of the ini-
tial perturbation R 5 r0/Rb $ 1 there is a sharp front
in the bottom pressure profile obtained from PCOM,
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FIG. 2. Geostrophic adjustment for PCOM and BCOM for the case
when heating reduces the density in the upper 100 m to 0.99r0; the
lower layer density is r0 and its thickness is 1000 m, and R is the
radius of the initial perturbation. Here Rb 5 / f ø 1000 km (hÏgh
5 1.1 km) is the barotropic radius of deformation for the ocean.
Dashed lines are for the free surface elevation (cm) and solid lines
are for the bottom pressure perturbations [in centimeters of water
column; Pb in (g) is exaggerated 10 times to show the structure of
the front].

although the bottom pressure signal itself is small. On
the other hand, the bottom pressure anomaly in BCOM
is big, and there is no sharp front in the bottom pressure
profile.

It is clear that when the initial horizontal scale is much
smaller than the barotropic radius of deformation, re-
sults from PCOM and BCOM are similar. As the initial
horizontal scale becomes comparable to the barotropic
radius of deformation, the difference between these two
models becomes noticeable. When the perturbations
have a horizontal scale on the order of the barotropic
radius of deformation, the differences between these two

become very large. In PCOM the initial signal of the
free surface elevation will persist, and there is very little
bottom pressure perturbation in the final state. On the
other hand, results from BCOM indicate that the initial
bottom pressure signal will persist, and there will be
very little signal in the free surface elevation. These
results are consistent with the theoretical reasoning dis-
cussed above.

b. Sea level and bottom pressure changes due to
precipitation

Precipitation affects the ocean in a way that is very
different from thermal forcing because precipitation car-
ries a mass flux affecting salinity through dilution, and
it is essentially barotropic in both the Boussinesq models
and the compressible models.

The geostrophic adjustment problems associated with
precipitation can be described using the analytical so-
lution discussed in the appendix. Because precipitation
induces a pressure perturbation that is barotropic in na-
ture, only precipitation that has an initial horizontal
scale comparable to the barotropic radius of deformation
can persist through the geostrophic adjustment. In fact,
calculations based on either the analytical models in the
appendix or the numerical models PCOM or BCOM
demonstrated that, for precipitation with horizontal scale
smaller than the barotropic radius of deformation, weak
barotropic signals in both the surface elevation and bot-
tom pressure are left behind. Only if the precipitation
has an initial horizontal scale larger than the barotropic
radius of deformation, will there be strong signals in
surface elevation and bottom pressure after the com-
pletion of the geostrophic adjustment. Barotropic ad-
justment is carried out primarily by the barotropic Ross-
by waves. The phase speed of the barotropic Rossby
waves with a horizontal scale of 100 km is about 10
times as slow as that of the barotropic long waves. How-
ever, the ‘‘apparent’’ adjustment time remains on the
order of a few days because the barotropic waves can
disperse the initial perturbations over a range that is 10
times as large as the dimension of the initial perturba-
tions.

As an example, we discuss a case with rainfall onto
a semi-infinite plane. For simplicity, we include the do-
main near the origin only (Fig. 3). For this case the
solutions from either the PCOM, the BCOM (both for
cases of constant f ), or the analytical model with or
without the Boussinesq approximations are very close
to each other. From this solution, it is readily seen that
in the final state the front associated with the precipi-
tation has a horizontal scale comparable to the baro-
tropic radius of deformation; thus, if the precipitation
has an initial scale much smaller than the barotropic
radius of deformation Rb, there will be very little signal
of sea level and bottom pressure anomaly left after the
geostrophic adjustment. It is important to note that this
solution is valid for the f plane only. On a b plane or
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FIG. 3. Free surface elevation (dashed) and bottom pressure after
adjustment in response to precipitation of 10 cm onto the left side
of a semi-infinite plane in PCOM.

FIG. 4. Sea surface height and surface salinity anomaly from pre-
cipitation of small scales after the completion of geostrophic adjust-
ment on an f plane. These maps correspond to the quantities of the
freshwater lenses left behind.

spherical coordinates, the front associated with the edge
of the precipitation is subject to strong Rossby wave
activity; see the discussion in section 5b.

The barotropic radius of deformation is approxi-
mately Rb 5 / f ø 2000 km, with the assumptionÏgHb

that the mean depth of the ocean is Hb 5 4 km. The
precipitation from a rainstorm in the atmosphere has a
horizontal scale on the order of 10–100 km, which is
much smaller than the barotropic radius of deformation.
Thus, sea surface elevation signals due to precipitation
mostly disappear during the fast barotropic geostrophic
adjustment. Although precipitation minus evaporation
makes a contribution to the temporal evolution of the
local sea level that is much larger than that from thermal
forcing, as can be seen from Eq. (2), the sea surface
elevation signals diagnosed from satellite altimeter data
do not show a strong contribution from precipitation.

In addition, there is a weak baroclinic pressure signal
due to the salinity change in the upper ocean induced
by mixing of freshwater with the seawater. The adjust-
ment of this baroclinic pressure signal obeys a dynamic
law similar to that discussed above. Because the hori-
zontal scale of precipitation is on the same order as the
first baroclinic radius of deformation, the baroclinic
pressure signal due to precipitation tends to persist dur-
ing the geostrophic adjustment. The basic scales of the
freshwater lens can be estimated as follows. Assume
that the upper-layer thickness is H1, with salinity of S0

5 35 and density of r0. Add precipitation of dh K H1,
and the density of the precipitated water is rf 5 r0(1
2 bS0) , r0. Assume b 5 0.000 67, so bS0 ø 0.025.
The new salinity after complete mixing is S 5
S0[(H1r0)/(H1r0 1 dhrf )]. Thus, the perturbation in sa-
linity is

rdh dhf
dS 5 2S ø 2S . (10)0 0H r H1 0 1

The new density is r 5 r0 1 dr, where dr 5 r0bdS

5 2rf bS0(dh/H1). After saline mixing, the upper layer
has a thickness of h 5 [(H1 1 (dhrf /r0)], [r0/(r0 1
dr)] ø H1[1 1 (dh/H1)]. Thus, the actual free surface
after mixing remains almost unchanged at Dh ø dh.

After the adjustment, the barotropic pressure signal
is mostly dispersed, and the sea surface height anomaly
associated with the freshwater lens can be identified
from the baroclinic pressure anomaly

dr dh
dh 5 2 H 1 1 ø bS dh K dh. (11)f 1 01 2r H0 1

The salinity and sea level change due to precipitation
on such relatively small scales can be estimated using
the equations discussed above, as shown in Fig. 4. The
results shown in this figure apply to scales much smaller
than the barotropic radius of deformation, that is, for
scale of hundreds of kilometers or less. For example,
for an upper layer 50 m thick and S 5 35, a rainfall of
50 cm leads to a sea surface height anomaly dh ø 1.35
cm and sea surface salinity anomaly dS ø 20.3.

In addition, in the ocean f is not constant, so these
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FIG. 5. Free surface elevation and bottom pressure perturbations along the midsection, diagnosed
from PCOM and BCOM for the case f 5 const. The horizontal axis is in units of barotropic
radius of deformation. The dashed line and solid line in (b) depict the free surface elevation before
and after the global correction as discussed in the text.

freshwater domes and lenses are subject to strong dis-
persion by both barotropic and baroclinic Rossby waves.
As a consequence, signals in sea surface height and
bottom pressure induced by precipitation can disappear
quickly into the background noise level, and they may
be difficult to identify from satellite data.

5. Geostrophic adjustment of isolated features in
numerical models

The theoretical analysis presented above was also
confirmed using the newly developed models PCOM
and BCOM. We have carried out many numerical ex-
periments, and these results are consistent with our the-
oretical analysis. For the case on an f plane, the nu-
merical solutions from both PCOM and BCOM match
the analytical solutions within the truncation errors of
the model.

a. Experiments forced by heating anomaly

As examples, we present a few sets of numerical ex-
periments in this section. In most experiments, the mod-
el ocean is a simple square basin of 608 3 608, with a
modest resolution of 28 3 28 and 15 layers. The same
time step, Dt 5 1 h, has been used for both the baroclinic
velocity and tracers.

The first experiment is carried out on the f plane,
and the initial state has uniform temperature 68C and
salinity 35. To verify the analytical solution discussed
above, we used a model ocean with a shallow depth of
100 m, so that the initial thermal perturbations have a
horizontal scale of the barotropic radius of deformation,
as shown in Fig. 5. Heating anomaly was imposed with-
in a square of 228 3 228 in the center of the model
ocean by assuming that the upper 10 m of the ocean is
heating up 38C instantaneously at t 5 0.

The solution is illustrated by a section through the
middle of the model. Because the initial horizontal scale
is about 2 times as large as the barotropic radius of
deformation, the initial pressure signals basically per-
sisted, as expected from the theory of geostrophic ad-
justment. In fact, there is a strong sea surface elevation
anomaly and very small bottom pressure signal left in
the steady state in PCOM (see left-hand panels of Fig.
5). On the other hand, there are relatively small sea
surface elevation and strong bottom pressure signals left
in the steady state in BCOM (see right-hand panels of
Fig. 5). In addition, we have applied the correction to
the sea surface elevation obtained from BCOM and in-
cluded it as the heavy line in Fig. 5b. Although the
global adjustment does improve the solution slightly, it
is obvious that such a globally uniform adjustment can-
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FIG. 6. The structure of the solution due to localized heating at day 50 in PCOM and BCOM for a model ocean 5
km deep (mm).

not restore the true solution. The bottom pressure profile
obtained from BCOM is so much different from that
obtained from PCOM that we did not include the global
correction because it really would not help to improve
the solution at all.

The experiment discussed above serves to verify the
analytical solution and illustrates the difference in Bous-
sinesq and non-Boussinesq models: however, this ex-
periment greatly exaggerates the difference between

PCOM and BCOM because of several factors in the
setting of the experiments: 1) the ocean is too shallow,
2) there is no b effect and 3) the heating was applied
within an infinitesimal time duration Dt → 0.

To assess the potential errors in ocean models based
on the Boussinesq approximations, we carried out two
more experiments with more realistic settings: 1) the
model ocean is 5 km deep; 2) the b effect is included
because now f varies with latitude; and 3) a heat flux
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FIG. 7. Time evolution of the solution: (a) sea surface elevation in PCOM; and (b) normalized error in BCOM,
defined as (h* 2 hpcom)/( ) 3 100%, where h* is the corrected sea surface elevation in BCOM.2 xÏhpcom

FIG. 8. Time evolution of the solutions taken along the central latitude: (a) bottom pressure in PCOM; and (b) normalized
error in BCOM, defined as ( 2 pb,pcom)/( ) 3 100%, where is the corrected bottom pressure in BCOM.* 2 x *p Ïp pb b,pcom b

of 200 W m22 applied within a circle with a radius of
128, centralized at the middle of the model ocean, and
the heat flux is linearly reduced to zero at the edge of
the circle.

The model ocean has a constant salinity of 35 and a
vertically linear temperature profile, from 08C (on the
bottom) to 258C at the upper surface. The horizontal
structure of the solution for day 50 is shown in Fig. 6.
Recall that the sea surface elevation and bottom pressure
presented in Figs. 6c and 6d have included the correc-
tion. Although the sea surface elevation pattern from
BCOM looks similar to that from PCOM, note that
PCOM predicts a sea surface elevation 1 mm higher
than BCOM (Figs. 6a,c,e).

When f varies with latitude, the solution becomes

much more complicated because of the dispersion as-
sociated with Rossby waves. The time evolution of the
free surface elevation taken along the midsection is
shown in Fig. 7. The normalized error in BCOM is the
largest within the first few days, although the amplitude
of the error is relatively small (Fig. 7). The errors in h
move westward quickly, resembling the barotropic
Rossby waves. In day 50, the relative error in sea surface
elevation at the center of the heating anomaly is about
3%. Thus, the errors in each time step do accumulate
and lead to errors larger than the 1%–2% based on in-
stantaneous estimate. Furthermore, the relatively large
errors during the first few days after the heating may
be a source of high-frequency aliasing errors.

The bottom pressure signal from heating is expected
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FIG. 9. Difference in (a) sea surface elevation and (b) bottom pressure between PCOM and BCOM (with the global
correction) for a model ocean with heating in the northern basin at day 50 (mm).

to be small in PCOM because there is no mass flux
through the air–sea interface. A small amount of water
does move out the area of heating, so there is a small
negative bottom pressure anomaly gradually formed lo-
cally (Fig. 6b). Such a small and negative bottom pres-
sure anomaly in the area of heating is consistent with
the theoretical argument presented in Fig. 1. On the
other hand, the bottom pressure anomaly from BCOM,
with correction, is totally different from that from
PCOM, as shown in Figs. 6d and 6f. The maximal error
is about 0.2 mm.

The temporal evolution of the bottom pressure taken
along the midsection is shown in Fig. 8. Within the do-
main of thermal forcing anomaly, pb in PCOM has weak
and negative signals that gradually intensify (Fig. 8a).
As discussed above, the global correction is necessary
for BCOM before any analysis of the dynamic meaning
can be done. With the global correction, the time evo-
lution of the bottom pressure signal is dramatically dif-
ferent from that of the PCOM. The normalized errors
associated with the bottom pressure at this section are
very large. On the other hand, the bottom pressure signals
produced in these numerical experiments are so small
that they may not be detectable with instruments. How-
ever, reasons for the difference in bottom pressure for
cases with realistic bottom topography and currents re-
main unclear, and it is left for further study.

To demonstrate the effect of lateral boundaries in re-
taining the initial perturbations, we carried out an ex-
periment for a large basin that mimics the Pacific. The
model has a dimension of 1208 3 1208 (from 608S to
608N), with a horizontal resolution of 28 3 28. At time
t 5 0, the ocean is forced by a heating source, which
is 200 W m22 at 608N and is linearly reduced to zero
at the equator, with no heating in the Southern Hemi-
sphere. The difference in both the surface elevation (2.4

mm) and bottom pressure (1.2 mm) is larger than in the
previous experiment (Fig. 9). Such relatively large er-
rors are due to the fact that the boundaries of the basin
prevent a complete dispersion of the barotropic Rossby
waves. As a result, part of the initial pressure pertur-
bations is retained, so the error introduced by the Bous-
sinesq models is more noticeable. A comprehensive ex-
amination of the dynamic effects of the lateral bound-
aries and topography is left for further study.

b. Experiments forced by precipitation

The dynamic effect of precipitation in the ocean is
more complicated. As discussed above, precipitation in-
duces barotropic pressure perturbations that excite bar-
otropic Rossby waves. Because barotropic waves travel
quickly, the barotropic pressure signals disperse over
the ocean within the order of one week. Because of the
finite dimensions of the ocean, waves reflect and travel
back to the eastern boundary via the edge of the basin
as Kelvin waves and move westward again in the form
of Rossby waves in the ocean interior. As a result, the
perturbations induced by precipitation are dominated by
strong barotropic Rossby waves.

Three experiments were carried out with a square
basin of 508 3 508, with 18 3 18 resolution. In the first
experiment, the model ocean is shallow, with a depth
of 1 km, with 15 layers of uneven thickness. The PCOM
model was started from a rest ocean with 50 mm of
precipitation at the surface over one day within a square
of 118 at the center of the basin. The central latitude is
258N, and the initial horizontal scale of the perturbation
is R 5 0.33, in units of the radius of barotropic defor-
mation.

In the second experiment, the model ocean is 5 km
deep, with 15 layers of uneven thickness, and PCOM
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FIG. 10. The time evolution of sea surface elevation and bottom pressure anomaly (PCOM) from precipitation of 5
cm accumulated over one day, taken along the central latitude of the precipitation (mm).

was used. The top layer initially has a thickness equiv-
alent to 22 m of water, and the lowest layer has a thick-
ness equivalent to 645 m of water. The initial horizontal
scale of the perturbation is R 5 0.15, in units of the
barotropic radius of deformation. In the third experi-
ment, we run BCOM under the virtual salt flux condition
(VSF) with the same model settings as used in the sec-
ond experiment.

For the case of a shallow model ocean with R 5 0.33,
the horizontal scale of the initial perturbations is smaller
than the barotropic radius of deformation, and the initial
sea surface elevation and bottom pressure signals are
mostly lost during the process of geostrophic adjust-
ment, which takes 2 days. As seen from Figs. 10a and
10b, the amplitude of sea surface elevation and bottom
pressure is on the order of 6 mm, more than 10% of
the total precipitation (50 mm).

On the other hand, for the case of a deep ocean with

R 5 0.15, the horizontal scale of the initial perturbations
is much smaller than the barotropic radius of defor-
mation, so the dispersion of the initial sea surface el-
evation and bottom pressure signals are more complete
than in the previous case. As seen from Figs. 10c and
10d, the amplitude of sea surface elevation and bottom
pressure is on the order of 3 mm, about 6% of the total
precipitation. Thus, these solutions obtained at the end
of the fast geostrophic adjustment are consistent with
our theoretical analysis presented in Section 4.

Because these experiments were carried out on mod-
el-based spherical coordinates, the evolution of the so-
lution after the relatively fast geostrophic adjustment is
controlled by the Rossby waves. For the case of a shal-
low ocean (R 5 0.33), the perturbations have a relatively
large amplitude and the phase speed of the Rossby
waves is relatively slow. Because the space occupied
by the model ocean is finite, energy carried by the waves
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FIG. 11. The sea surface elevation and bottom pressure anomaly (at day 30) from precipitation of 5 cm over a 5-
km deep ocean (mm). Note that BCOM was run under the virtual salt flux condition and the global correction has
been applied to both the sea surface elevation and bottom pressure.

cannot disperse into infinity; instead, these energy-con-
tained waves reflect back from the western boundary in
the form of Kelvin waves that propagate along the edge
of the model basin and radiate from the eastern bound-
ary. As a result, strong barotropic Rossby waves excited
by the precipitation slosh back and forth, as seen from
Figs. 10a and 10b.

For the case with a deep ocean (R 5 0.15), the initial
scale of the perturbations is much smaller than the bar-
otropic radius of deformation, so they quickly disperse
through barotropic Rossby waves and leave behind a
sea surface height anomaly around the center of the
perturbation. The freshwater lens behind after the com-
pletion of geostrophic adjustment is very close to the
theoretical limit discussed in the previous section; that
is, there is very little bottom pressure signal left, but
the sea surface height anomaly left is very close to that

calculated from Eq. (11), as depicted by the solid lines
in Figs. 10c and 10d.

The horizontal structure of the solutions at day 30 is
shown in Fig. 11. The baroclinic pressure signal is out-
standing in the sea surface elevation pattern but not in
the bottom pressure pattern (Figs. 11a and 11b). As
discussed above, the barotropic pressure signal associ-
ated with precipitation is mostly lost during the geo-
strophic adjustment, and what is left are small-amplitude
perturbations that propagate as Rossby waves (see Figs.
11a,b and Figs. 12a,b).

c. Experiments forced by virtual salt flux

Here we discuss the pitfalls of using VSF. Although
VSF is not part of the Boussinesq approximations, over
a long time VSF has been used in many studies. Part
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FIG. 12. The sea surface height and bottom pressure taken at the central latitude of the precipitation at days 31, 33,
35, and 37: the solid lines are for PCOM and the dashed lines are for BCOM (under the virtual salt flux condition).

of the reason for using VSF is that an accurate precip-
itation and evaporation dataset is not available for many
applications. However, using VSF may induce notice-
able errors in the simulation of free surface and bottom
pressure. We have carried out the third experiment to
illustrate the pitfalls of using VSF in numerical simu-
lation. The BCOM is run under a virtual salt flux that
is equivalent to 50 mm of precipitation over one day.
(The same experiment can be carried out with the PCOM
and VSF, with almost identical results.) The model set-
ting is exactly the same as in the second experiment
discussed above, that is, an ocean that is 5 km deep.

As in the previous cases, the global correction was
applied to results from this run before any analysis. Both
the sea surface elevation and bottom pressure pattern at
day 30 are shown in Figs. 11c and 11d. Although the
patterns for PCOM and BCOM 1 VSF look similar, a
close examination reveals that the spatial gradient of
both h and pb in BCOM 1 VSF is much smaller than
that in PCOM. In fact, the spatial gradient of h and pb

in BCOM 1 VSF is so small (the h field in BCOM 1
VSF consists of two zones of constant value linked by
a sharp front) that we do not included them in Fig. 10.
The h and pb taken along the central latitude of pre-
cipitation from PCOM and BCOM 1 VSF are shown
in Fig. 12.

The essential difference in these two cases is the fol-
lowing: For a model under VSF, the additional mass
from precipitation is totally neglected. Furthermore, the
reduction of salinity due to the equivalent salt flux in-
duces a mass loss in the model, r0bS0dh ø 0.025r0dh.
Thus, the precipitation is simulated with a barotropic
pressure signal that is much smaller and has a wrong
sign. During the geostrophic adjustment this barotropic
pressure signal is mostly lost for the case of a deep
ocean, so the amplitude of the barotropic Rossby waves

associated with the residual of the barotropic pressure
is extremely small; see Figs. 11c and 11d. A careful
examination reveals that the bottom signal in BCOM
has sign opposite to that in PCOM, and this result is
consistent with the reasoning above that the positive
mass gain from precipitation is replaced by a mass loss
(of much smaller amplitude).

Similar to the case with the natural boundary con-
dition, there is a baroclinic signal associated with the
relatively low salinity water in the upper box. Because
the initial scale of the perturbations is much larger than
the baroclinic radius of deformation, the baroclinic pres-
sure signals persist. Thus, a small positive sea level
signal (associated with the initial baroclinic pressure
signal) and a zero bottom pressure signal remain. With
the global correction, this is what the dashed lines in
Fig. 12 indicate. In summary, the model under VSF
neglects the mass contribution from precipitation and
evaporation; instead, there is a negative mass source
from freshening in the upper layer. Thus, the barotropic
Rossby waves associated with precipitation and evap-
oration are simulated incorrectly in such model runs.

It is important to note that because precipitation gen-
erates barotropic Rossby waves that can cross the ocean
in less than 10 days, these waves may be difficult to
analyze using satellite data collected over a time interval
longer than 10 days.

6. Conclusions

Boussinesq approximations have been commonly
used in both theoretical and numerical models. These
approximations have been proven to be accurate for
many applications. However, errors introduced by these
approximations may not be totally negligible. In this
study, we have shown that these approximations distort
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FIG. A1. Sketch of the geostrophic adjustment in a two-layer model ocean.

the physical processes in the oceans and thus lead to
noticeable errors in the time evolution and the equilib-
rium state of the free surface and bottom pressure. The
errors introduced by the Boussinesq approximations
were studied using geostrophic scaling, the theory of
geostrophic adjustment under simple geometry, and a
newly developed PCOM model. Results from these
three approaches lead to consistent estimates for the
possible errors induced by these approximations.

The largest errors associated with the Boussinesq ap-
proximations appear when the ocean is subject to strong
thermal forcing on large scales (on the order of thou-
sands of kilometers). Because of the artificial source/
sink of mass in the Boussinesq models, the free surface
elevation and bottom pressure signals induced by ther-
mal forcing produced from these models may be no-
ticeably different from those obtained from the truly
non-Boussinesq models. In a similar way, using the vir-
tual salt flux condition can induce noticeable errors
caused by omitting the barotropic Rossby waves in-
duced by precipitation and evaporation.

The Boussinesq approximations have dominated oce-
anic circulation modeling for the past century. We hope
that with fast advances in new technology, including
high-accuracy satellite missions, such as the Ocean To-
pography Experiment (TOPEX) and the Gravity Re-
covery and Climate Experiment (GRACE), and increas-
ingly speedy microchips, mass-conserving models may
become more widely used in the near future.
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APPENDIX

Geostrophic Adjustment Induced by Initial
Density Perturbations

The geostrophic adjustment of a multilayer model in
the ocean has been discussed in many papers, for ex-
ample, Stommel and Veronis (1980). Our analysis here
parallels that by Mihaljan (1963). If one assumes the
flow field is independent of x, the x-momentum equa-
tions are

du du1 25 fy and 5 fy .1 2at dt

Upon integration from t 5 0 to `, these lead to

u 5 f (y 2 Y ) 1 U (Y ) and1 1 1 1

u 5 f (y 2 Y ) 1 U (Y ),2 2 2 2

where Y1 and Y2 are the initial positions of the water
parcels and U1 and U2 are the initial velocities. In the
final state, the downstream velocities are geostrophic:

fu 5 2g(h 1 h ) and fu 5 2g(gh 1 h ),1 1y 2y 2 1y 2y

where g 5 (r 2 dr)/r , 1. Conservation of mass in
each layer gives

dY dY1 2h 5 H and h 5 H ,1 1 2 2dy dy

where H1 and H2 are the initial layer thickness.
These equations can be solved for the cases of simple

geometry, such as a semi-infinite plane or a patch of
density perturbation due to thermohaline forcing on an
f plane. Since the solution is symmetric with respect
to center, we will discuss the right-hand-side half of the
solution. The half-width of the original density patch is
DY, and the final solution consists of three segments as
shown in Fig. A1b.
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a. Region I

Region I is 0 # y # y1, where both layers are in
motion. The unperturbed depths of the first and second
layers are xH1` and kH1`, x 5 1 for heating in a Bous-
sinesq model, x 5 1/g for heating in a compressible
model, and x 5 p/g for precipitation in a compressible
model. (Here p 2 1 indicates the contribution from pre-
cipitation.) To facilitate the analysis, we introduce the
nondimensional variables

ÏgH1`
h 5 H h9, h 5 kH h9, y 5 y9,1 1` 1 2 1` 2 f

U 5 ÏgH u9 , and U 5 ÏgH u9 .1 1` 10 2 1` 20

In this study, we will discuss the cases of an initially
stagnant ocean, so the initial velocity is zero; for the
case with nonzero velocity, see Huang (1990). Using
these nondimensional variables and dropping the
primes, we derive two second-order ordinary differen-
tial equations

2 2d Y d Y1 2x 1 k 2 Y 5 2y12 2dy dy
2 2d Y d Y1 2gx 1 k 2 Y 5 2y.22 2dy dy

Their solutions are

I a y 2a y a y 2a y1 1 2 2Y 5 y 1 a e 1 a e 1 a e 1 a e ,1 1 2 3 4

I a y 2a y a y 2a y1 1 2 2Y 5 y 1 b e 1 b e 1 b e 1 b e ,2 1 2 3 4

a y 2a y a y1 1 2h 5 1 1 a a e 2 a a e 1 a a e1 1 1 2 1 3 2

2a y22 a a e ,4 2

a y 2a y a y1 1 2h 5 1 1 b a e 2 b a e 1 b a e2 1 1 2 1 3 2

2a y22 b a e ,4 2

where

1/22k 1 x 6 Ï(k 2 x) 1 4kgx
a 5 .6 [ ]2kx(1 2 g)

b. Region II

Region II is y1 # y # y0, where both layers are in
motion, the unperturbed depth of the first layer is x, and
the unperturbed depth of the second layer is k 1 1. The
basic equations are

2 2d Y d Y1 2x 1 (k 1 1) 2 Y 5 2y,12 2dy dy
2 2d Y d Y1 2gx 1 (k 1 1) 2 Y 5 2y,22 2dy dy

II b y 2b y b y 2b y1 1 2 2Y 5 y 1 c e 1 c e 1 c e 1 c e ,1 1 2 3 4

II b y 2b y b y 2b y1 1 2 2Y 5 y 1 d e 1 d e 1 d e 1 d e ,2 1 2 3 4

II b y 2b y b y1 1 2h 5 1 1 c b e 2 c b e 1 c b e1 1 1 2 1 3 2

2b y22 c b e ,4 2

II b y 2b y b y1 1 2h 5 1 1 d b e 2 d b e 1 d b e2 1 1 2 1 3 2

2b y22 d b e ,4 2

where

1/22k 1 1 1 x 6 Ï(k 1 1 2 x) 1 4(k 1 1)gx
b 5 .6 [ ]2(k 1 1)x(1 2 g)

c. Region III

Region III is y0 # y, where the upper layer vanishes,
and only the lower layer is in motion, with the nondi-
mensional unperturbed thickness of k 1 1. The basin
equation is

2d Y2(k 1 1) 2 Y 5 2y.22dy

The solution is

III 2my III 2myY 5 y 1 e e , and h 5 1 2 e me ,2 1 2 1

where m 5 [1/(k 1 1)]1/2.
There are 19 unknown constants: a1, a2, a3, a4, b1,

b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4, e1, y0, and y1.
To determine these constants we use the following con-
straints. The basic equations in Region I require

2 2gxa gxa1 1b 5 a , b 5 a ,1 1 2 22 21 2 ka 1 2 ka1 1

2 2gxa gxa2 2b 5 a , b 5 a ,3 3 4 42 21 2 ka 1 2 ka2 2

2 2gxb gxb1 1d 5 c , d 5 c ,1 1 2 22 21 2 (k 1 1)b 1 2 (k 1 1)b1 1

2gxb2d 5 c ,3 321 2 (k 1 1)b2

2gxb2d 5 c .4 421 2 (k 1 1)b2

The continuity of the solution at y1 requires
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a y 2a y a y 2a y1 1 1 1 2 1 2 1a e 1 a e 1 a e 1 a e1 2 3 4

b y 2b y b y 2b y1 1 1 1 2 1 2 15 c e 1 c e 1 c e 1 c e ,1 2 3 4

a y 2a y a y 2a y1 1 1 1 2 1 2 1b e 1 b e 1 b e 1 b e1 2 3 4

b y 2b y b y 2b y1 1 1 1 2 1 2 15 d e 1 d e 1 d e 1 d e ,1 2 3 4

a y 2a y a y 2a y1 1 1 1 2 1 2 1a a e 2 a a e 1 a a e 2 a a e1 1 2 1 3 2 4 2

b y 2b y b y 2b y1 1 1 1 2 1 2 15 c b e 2 c b e 1 c b e 2 c b e ,1 1 2 1 3 2 4 2

and
a y 2a y a y 2a y1 1 1 1 2 1 2 1k(1 1 b a e 2 b a e 1 b a e 2 b e )1 1 2 1 3 2 4

b y 2b y b y1 1 1 1 2 15 (k 1 1)(1 1 d b e 2 d b e 1 d b e1 1 2 1 3 2

b y2 12 d b e ).4 2

The continuity of the solution at y 5 y0 requires
b y 2b y b y 2b y1 0 1 0 2 0 2 0d e 1 d e 1 d e 1 d e1 2 3 4 4

2my05 e e ,1

b y 2b y b y 2b y1 0 1 0 2 0 2 0d b e 2 d b e 1 d b e 2 d b e1 1 2 1 3 2 4 2

2my05 2e me .1

In addition, the upper layer vanishes at y 5 y0:
b y 2b y b y 2b y1 0 1 0 2 0 2 0c b e 2 c b e 1 c b e 2 c b e1 1 2 1 3 2 4 2

5 21.

At the origin the particles do not move, so Y1 5 Y2 5
0 at y 5 0:

a 1 a 1 a 1 a 5 0, and b 1 b 1 b 1 b 5 0.1 2 3 4 1 2 3 4

Last, the fronts in layers 1 and 2 should be the same in
the old coordinates, DY:

b y 2b y b y 2b y1 0 1 0 2 0 2 0y 1 c e 1 c e 1 c e 1 c e0 1 2 3 4

a y 2a y a y 2a y1 1 1 1 2 1 2 15 y 1 b e 1 b e 1 b e 1 b e1 1 2 3 4

and
b y 2b y b y 2b y1 0 1 0 2 0 2 0y 1 c e 1 c e 1 c e 1 c e0 1 2 3 4

5 DY.

These equations are linear in a1, a2, a3, a4, b1, b2,
b3, b4, c1, c2, c3, c4, d1, d2, d3, d4, and e1. Thus, after
eliminating these constants, we obtain two transcen-
dental equations of two unknowns y0 and y1.

REFERENCES

Bois, P. A., 1991: Asymptotic aspects of the Boussinesq approxi-
mation for gases and liquids. Geophys. Astrophys. Fluid Dyn.,
58, 45–55.
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