
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 88, NO. B12, PAGES 10,299-10,307, DECEMBER 10, 1983 

Autoregressive Harmonic Analysis of the Earth's Polar Motion 
Using Homogeneous International Latitude Service Data 

B. FONG CHAO 

Geodynamics Branch, Goddard Space Flight Center 

The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion 
data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces 
estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and 
phase) of each harmonic component in the data. Principal conclusions of this analysis are that (1) the ILS 
data support the multiple-component hypothesis of the Chandler wobble (it is found that the Chandler 
wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, 
each of which represents a steady, nearly circular, prograde motion, a behavior that is inconsistent with 
the hypothesis of a single Chandler period excited in a temporally and/or spatially random fashion), (2) 
the four-component Chandler wobble model "explains" the apparent phase reversal during 1920-1940 
and the pre-1950 empirical period-amplitude relation, (3) the annual wobble is shown to be rather 
stationary over the years both in amplitude and in phase, and no evidence is found to support the large 
variations reported by earlier investigations, (4) the Markowitz wobble is found to be marginally retro- 
grade and appears to have a complicated behavior which cannot be resolved because of the shortness of 
the data set. 

1. INTRODUCTION 

The earth's rotational axis does not remain fixed relative to 

the body of the earth. Instead, the intersection of the axis with 
the surface of the earth (i.e., the pole) traces out a quasi- 
periodic path about some (slowly drifting) mean position on a 
scale _< 0.3 arc sec = 10 m. This motion is known as the polar 
motion of the earth. The polar motion in principle consists of 
a number of components arising from various dynamical pro- 
cesses •see, e.g., Rochester, 1973]. The most prominent ones 
(with amplitude above the 0.01 arc sec level, say) in the Inter- 
national Latitude Service (ILS) polar motion data include the 
annual wobble, the 14omonth Chandler wobble, a "Markowitz 
wobble" with a period of about 30 years (first reported by 
Markowitz [1960] as having a period of 24 years), and a linear 
secular drift (or the polar wander) [see, e.g., Wilson and Vi- 
cente, 1980]. The present paper is aimed principally at a nu- 
merical analysis (rather than a geophysical interpretation) of 
the ILS data by means of the "autoregressive" method [Chao 
and Gilbert, 1980], which has been successfully applied to the 
analysis of data of earth's normal modes of free oscillations 
[Chao and Gilbert, 1980; Masters and Gilbert, 1983]. All of the 
four said motions will be studied, with emphasis on the 
Chandler wobble, whose mysterious behavior has defied an 
unambiguous analysis and has aroused a great deal of contro- 
versy. 

One of the fundamental questions concerning the Chandler 
wobble is the following' Is the observed Chandler wobble the 

less randomly in space-time by some yet unidentified source(s) 
or is it the consequence of a beating phenomenon of more 
than one component having close periods? In this paper, we 
show that the homogeneous set of 80-year ILS polar motion 
data is consistent with the multiple-component hypothesis. In 
fact, it is found that the ILS Chandler wobble can be ad- 
equately modeled as a linear combination of as many as four 
(coherent) sinusoidal components. However, first, let us be 
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warned of the pitfalls in power spectral analysis, the technique 
commonly used in treating data of a periodic nature, such as 
the polar motion. 

2. SOME NOTES ON THE USE OF POWER SPECTRA 

AND DATA WINDOWS 

Take a noisy time series containing a number of sinusoidal 
components (whether pure, decaying, or growing) that have 
different signal amplitudes and are very close together in fre- 
quency, with frequency difference of the order of 1/(total 
length), say. Suppose we hope to analyze each and every com- 
ponent. A common practice to obtain the frequency estimates 
is to calculate a discrete Fourier power spectrum (DFPS) and 
identify the spectral peaks. Unfortunately, in the present case, 
the DFPS is a "dangerous" frequency estimator. For one 
thing, if the DFPS is obtained through a fast Fourier trans- 
form (FFT) algorithm, the frequency resolution is generally 
inadequate to give satisfactory frequency estimates and may 
even lead to completely erroneous conclusions (for an exam- 
ple, see Buland and Gilbert [1978]). This can be easily reme- 
died by directly interpolating around the spectral peaks using 
discrete Fourier transform (DFT) or, often more efficiently, by 
padding zeros at the end of the series (normally several times 
as long as the series itself) and then running the FFT to get a 
denser DFPS. However, a more serious problem arises from 
spectral leakage (manifesting itself as side bands around the 
spectral peaks) which, in turn, is caused by the end effects (or, 
equivalently, by the finiteness of the record length) of the time 
series. This interference can, and usually does, considerably 
bias the DFPS frequency estimates (for an example, see 
Dahlen [ 1982]) and may even introduce spurious peaks. 

The latter problem can be greatly reduced by the technique 
of time-domain windowing, which will play an important role 
in our study to follow. A time-domain window, in a nutshell, is 
a bell-shaped taper to be multiplied into the time series under 
consideration prior to DFT in order to reduce spectral leak- 
age. However, it does so at the expense of the sharpness of the 
spectral peaks; so a good window represents some optimum 
compromise (for a review, see, for example, Harris [1978]). 
Because of this, the windowed DFPS is, at its best, an un- 
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biased but still poor estimator for frequencies when a high 
resolution is required. 

The interference, enforced by the broadening of spectral 
peaks due to the finite length and window (if used), makes the 
DFPS an even worse estimator for the amplitude and the 
quality factor Q (2Q = (frequency)/(exponential decay rate)) of 
the components. Finally, it should be pointed out that any 
power spectrum is completely void of any information about 
the phases and is unable to distinguish between positive and 
negative Q (because both have the same effect on the spectral 
width). 

The spectral peak in a maximum entropy power spectrum 
(MEPS) is sometimes used as a high-resolution frequency esti- 
mator in polar motion studies [see, e.g., Srnylie et al., 1973; 
Wells and Chinnery, 1973; Cuttle, 1974]. One major difficulty, 
however, lies in the somewhat ad hoc choice of the length of 
the prediction error filter; a short filter offers no better resolu- 
tion than the conventional Fourier technique, whereas a long 
filter often leads to instabilities [see Chen and Stegen, 1974; 
Curtie, 1974]. In addition, Chen and Stegen [1974] have 
shown that MEPS, when used on short records, yields biased 
frequency estimates, depending on the initial phase of the 
record. Moreover, the Q and the amplitudes are not directly 
related to the MEPS, and MEPS contains no phase infor- 
mation. 

To avoid the problems suffered by DFPS and MEPS, we 
shall use the "autoregressive" (AR) method developed by Chao 
and Gilbert [1980]. For easy reference, we now give a brief 
review of the AR method. 

3. A BRIEF REVIEW OF THE AUTOREGRESSIVE 

(AR) METHOD 

The AR method, in essence, is a Prony's method formulated 
in the frequency domain. It is designed to estimate the com- 
plex frequency (or, equivalently, period and Q) and the com- 
plex amplitude (or, equivalently, amplitude and phase) of each 
complex sinusoidal function from a discrete time series consis- 
ting of a number of such components. The time series can be 
written as 

M 

x(n) = Y'. [A• exp (ina•) + A•* exp (-ina•*)] (1) 
j=l 

n= 1,2, 3,...,N 

where N is the number of data points, M is the number of 
components, {At} and {at} are, respectively, the complex am- 
plitude and the complex frequency of the jth component; { 
and {at} are all unknowns to be estimated from the data {x(n); 
n = 1, 2,"', N}. The nonlinear problem of estimating {%} is 
rendered linear by transforming (1) into the following autore- 
gressive form' 

2M 

x(n) = • Six(n- i) n = 2M + 1,-", N (2) 
i=1 

with a new set of unknowns to be determined' the 2M real AR 

coefficients {Si; i = 1, 2,..., 2M}. Once the latter is found (see 
below), the set of M complex frequencies {•; j = 1, 2,..., M} 
can be recovered by finding the 2M poles of the AR series (2) 
via the following 2Mth degree polynomial equation in com- 
plex variable Z' 

Z TM __ SlZ 2M-1 _ S2 Z2M-2 ..... S 2 
M 

= • [Z - exp (i%)][Z - exp (-i%*)] (3) 
j=l 

Equation (3) is from Prony [see, e.g., Froberg, 1969] and can 
be easily solved numerically using, for example, Bairstow's 
method. 

To find {Si}, instead of doing, say, a least squares time 
domain estimation directly from (2), we taper all time series on 
both sides of (2) by a Hanning window and then Fourier 
transform (2) at a few frequency points in a narrow frequency 
band containing the target single component or a few inter- 
fering components whose complex frequencies are to be esti- 
mated. Then, considering only these components, we can 
obtain the least squares solutions for the Si thereof by means 
of, say, singular value decomposition. The advantage of doing 
so in the frequency domain is twofold. 

1. We have "decomposed" (2) into small, independent 
subsystems each of which corresponds to one component 
(M = 1) or a small number of interfering components (M < 3, 
say) regardless of how many components are actually present 
in the time series (which, in many cases, is unknown). 

2. The use of tapering windows and the fact that Fourier 
transformation "concentrates" the information of a sinusoidal 

component into a narrow frequency band greatly improve our 
estimates at a given signal-to-noise ratio. However, we should 
emphasize here that the uncertainty in the Q estimate is, in 
general, 2Q times larger than that in the frequency estimate 
[Chao and Gilbert, 1980]. 

After obtaining the complex frequency estimates of a given 
component as described above, we can go back to (1) and do 
(linear) least squares estimation for its complex amplitude A t. 
For the same reasons as above, we do this in the frequency 
domain. 

Now that we have obtained both the complex frequency 
and the complex amplitude of a particular component, we can 
subtract that component from the time series and hence 
remove the corresponding spectral peak from the power spec- 
trum (for an example, see Figure 3). In general, the quality of 
our AR estimates for a given component is directly pro- 
portional to the signal-to-noise ratio of the component, and 
formulae given by Chao and Gilbert [1980] will be used to 
assess the uncertainties in the estimates. Finally, we point out 
that the AR method is robust, fast, and above all, has high 
frequency-resolving power. 

4. DATA ANALYSIS 

The polar motion data set that we use in this study is the 
homogeneous ILS data set reduced by Yumi and Yokoyama 
[1980]. It spans 80 years: 1900-1979; that makes it the only 
homogeneous data set in existence which is long enough to 
resolve the fine structure in the Chandler wobble. It consists of 

two monthly time series: the X direction motion along the 
Greenwich meridian and the Y direction motion along the 
90øE longitude. Note that we have reversed the astronomical 
Y direction so that the coordinate system used here is a right- 
handed one (when viewed from above the north pole). 

4.1. Pretreatment of the Data 

Prior to our AR analysis of the polar wobbles, we first 
subtract from both series a mean and a linear trend estimated 

by a least squares fit. This procedure is simply a measure of 
"cleaning up" the data. It yields, as a by-product, an estimate 
for the secular drift of the pole: 3.52 arc sec x 10-3/yr in the 
direction 79.4øW. This estimate, unsophisticated as it is, agrees 
well with earlier investigations (see the summary by Lainbeck 
[1980, pp. 90-91], and also Dickman [1981]). The two result- 
ant zero-mean, trendless series will be designated ILS-X and 
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ILS-Y, and are shown in Figures la and 2a, respectively. The 
(Hanning windowed) Fourier power spectra, heavily interpo- 
lated (by means of zero padding of the time series prior to an 
FFT), of ILS-X and ILS-Y are given in Figure 3. Seen rising 
well above the noise level are the spectral peaks belonging to 
the Markowitz wobble (WM), the annual wobble (AW), and 
the Chandler wobble (CW). 

4.2. Autoregressive (AR) Analysis of the Polar Wobbles 

1. We perform a single-component AR analysis for the 
Markowitz wobble on ILS-X and ILS-Y; the resultant esti- 
mates of complex frequency and complex amplitude (the latter 
referred to the epoch 1900) are listed in Table 1. 

2. Similarly, we obtain single-component AR estimates for 
the annual wobble, resulting in Table 2. 

3. For the Chandler wobble, Figure 3 clearly warns of 
complicated structures; it shows (at least) four spectral peaks 
associated with the Chandler wobble, barely resolvable visibly. 
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Fig. 2. Same as Figure 1, but for the Y component. 

This is a situation to which the AR method is particularly 
suited and useful. It is our experience that for noisy data 
containing signals of considerably different signal-to-noise 
ratios (as in the present case), AR estimates deteriorate when 
given too many degrees of freedom. Therefore, as a first step, 
only two components near the central period (referred to as 
components II and III) are tried and subtracted. Now that the 
two components II and III are removed, a remaining set of 
two components (referred to as I and IV) are revealed in the 
spectrum. We then reverse the role of the two sets and iterate 
this procedure to ensure that each set of two-component esti- 
mates is essentially free from contaminations from the other 
two components. Figures 4 and 5 show the result of the said 
subtraction procedures for ILS-X and ILS-Y, respectively (the 
annual wobble has been removed beforehand according to 
Table 2). The results converge after only one iteration; they 
are listed in Table 3. 

Two things should be noted here. 
1. As mentioned earlier in section 3, AR method yields 

estimates for harmonic component(s) in a narrow frequency 
band, independent of components that reside in other disjoint 

TABLE 1. AR Estimates for the Markowitz Wobble 

Period, Amplitude 
years Q (0.001 arc sec) 

ILS-X 29.6 _+_ 1.1 > 15, < -11 24.6 ___ 4.4 
ILS-Y 31.7 +__ 0.9 >25, < -12 23.0 +_ 3.2 

Phase, 
deg 

197 +_ 10 
242 __+ 8 

TABLE 2. AR Estimates for the Annual Wobble 

Period, Amplitude Phase, 
days Q (0.001 arc sec) deg 

ILS-X 365.20 _+_ .08 -930 ~ -3700 88.4 ___ 2.5 108 ___ 2 
ILS-Y 365.10 +_ .10 800 • 4600 84.0 _+_ 3.0 10 _+_ 2 
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Fig. 3. Hanning-windowed Fourier power spectrum of (a) ILS-X 
(see Figure la) and (b) ILS-Y (see Figure 2a). The dashed line indi- 
cates the spectrum after removal (by subtraction according to Tables 
1, 2, and 3, respectively) of the Markowitz wobble (MW), annual 
wobble (AW), and Chandler wobble (CW). 

frequency bands. In the present case, the spectral peaks of the 
three wobbles are indeed well separated thanks to the long 
record length (see Figure 3). This means that there is no sig- 
nificant interference (in the frequency domain) between wob- 
bles, and our estimates presented in Tables 1-3 have not been 
contaminated by the presence of other wobble terms. This, 
however, is not an essential requirement. For instance, if the 
record length is such that the annual Chandler interference is 
significant, we can simply perform a simultaneous estimation 
for both wobbles in a similar manner as in analysis 3 above. 
The removal of the wobble terms, by subtracting them from 
ILS-X and ILS-Y according to Tables 1-3, is shown in Figure 
3 (as dashed lines). 

2. In Tables 1-3 we have also included the standard devi- 
ations for the estimates, calculated according to formulae 
given by Chao and Gilbert [1980]. That some of the Q esti- 
mates are associated with large uncertainties is inevitable in 

situations where the record length is much shorter than the 
decay, or growth, time of the component in question. Note 
that a Q estimate such as "> 15, < -11" means that the am- 
plitude of the component, if decaying, decays less rapidly than 
Q = 15, or, if growing, grows less rapidly than Q = - 11. 

5. MOTION OF THE POLAR WOBBLES 

In this section, we give a detailed discussion of the foregoing 
results as presented in Tables 1-3. 

5.1. Markowitz Wobble 

If we subtract the annual and the Chandler wobbles (ac- 
cording to Tables 2 and 3, respectively) from both ILS-X and 
ILS-Y, we get ILS-X-MW and ILS-Y-MW, the series in which 
the Markowitz wobble is the sole significant signal. They are 
shown in Figures 1 b and 2b. The predominant feature, clearly, 
is a random noise, but the 30-year periodicity is now visible. 
The "excursion" near both ends is the consequence of some 
misfit due, in turn, to the usage in the AR analysis of the 
tapering window which tends to deemphasize the end values 
of the time series in the fitting procedure. 

Figure 6a gives a visual presentation of the results in Table 
1 by showing an extrapolated five-cycle pole path of the Mar- 
kowitz wobble. Note that the Q used in Figure 6 correspond 
to the mean rate of decay (or growth) (that is, the mean of 
1/Q• and l/Q2, where Q• and Q2 are the upper and lower 
bounds on Q as listed in Tables 1-3). For instance, in the 
present case for the Markowitz wobble, Q = -88 for ILS-X, 
and Q = -43 for ILS-Y. It is marginally retrograde (ILS-X- 
MW lags ILS-Y-MW by 45 -/-_ 18ø), in agreement with Dick- 
man's [1981] analysis. The wandering about of the Markowitz 
pole path (as opposed to a steady, repetitive one) is due 
mainly to the large difference in the two period estimates. 
However, this difference may not indeed be substantial when 
we take into consideration the uncertainties associated with 

the period estimates. In any event, in light of the fact that the 
ILS data contain only about 2« cycles of the motion, all we 
can claim is that Table 1 (and hence Figure 6a) only reflects 
certain features of a possibly complicated motion during a 
relatively short span of time. Note that our analysis shows 
little, if any, indication of a rapidly decaying Markowitz am- 
plitude as reported by Vicente and Curtie [1976]' Our Q esti- 
mates for the Markowitz wobble have absolute values con- 

siderably higher than their values. Vicente and Curtie [1976] 
obtained their Q values based on the spectral width in the 
MEPS, an estimator that cannot distinguish between decaying 
and growing amplitudes (see section 2). In fact, our results do 
favor the latter, implying that the Markowitz wobble has been 
excited during the past 80 years. 

5.2. Annual Wobble 

The period estimates for the annual wobble agree well with 
the theoretical value of 365.25 days; and the Q estimates are 

TABLE 3a. AR Estimates for the Chandler Wobble From ILS-X 

Period, Amplitude Phase, 
Component days Q (0.001 arc sec) deg 

I 406.45 _ .29 > 500, < -1080 26.7 _ 2.4 216 d- 5 
II 426.00 _ .08 711 _ 27% 119.9 +__ 2.7 273 d- 1 
III 437.46 d- .09 -189 _ 8% 57.3 _ 1.3 342 +_ 1 
IV 452.73 d- .27 180 _ 22% 68.6 _ 4.3 150 _ 4 

TABLE 3b. AR Estimates for the Chandler Wobble From ILS-Y 

I 406.85 _ .42 -210 • -1930 17.0 d- 2.1 132 __ 7 
II 426.15 _ .10 703 _ 34% 119.5 _ 3.4 185 _ 2 
III 437.43 d- .11 -184 d- 10% 57.2 d- 1.6 253 d- 2 
IV 452.39 _ .33 220 • 600 56.9 _ 4.5 54 d- 5 

Period, Amplitude Phase 
Component days Q (0.001 arc sec) deg 
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optimum representations (in the least squares sense) of the 
behavior of the annual term in the 80-year span according to 
ILS observations. 

We can reveal the annual wobble by subtracting the Mar- 
kowitz and the Chandler wobbles (according to Tables 1 and 
3, respectively) from both ILS-X and ILS-Y. The resultant 
series, designated ILS-X-AW and ILS-Y-AW, are shown in 
Figures lc and 2c. It is seen that the annual wobble, although 
fluctuating from year to year, appears to be fairly steady on a 
longer time scale (except for the excursion near both ends 
which, as stated above, is an artifact). This is also manifested 
by the high absolute values of the • estimates. Figure 6b gives 
a five-cycle pole path of the annual wobble according to Table 
2. ILS-X-AW leads ILS-Y-AW by 98 _ 4 ø, giving an almost 
purely prograde motion. 

Brillinger [1973] and Dickman [1981] have studied the time 
variations in the amplitude and phase of the polar wobbles at 
some chosen nominal frequency by means of complex de- 
modulation. We shall now do the same for the observed 

annual wobble. 

Following Dickman [1981], the complex demodulate 
at frequency f of a complex time series z(t) is defined as 

1 

Ffit)- 2L + 1 i,_•.<•. z(u) exp (-i2rcfu) (4) 
Thus, [Ffit)[ is a "running amplitude" and arg (Ffit)) a "run- 
ning phase" of z(t) at frequency f averaged over a (2L + 1)- 
point long segment of the time series. We choose L = 48 so 
that the averaging length is about 10% of the total, or 8 years. 

Now let f correspond to the theoretical period of the annual 
wobble, 365.25 days (positive for prograde motions), and let 

z(t) = (ILS-X-AW) + i(ILS-Y-AW) (5) 

The resultant complex demodulate is shown in Figure 7. It 
confirms the earlier observation that the amplitude and phase 
of the annual wobble are rather stationary over the years 
(except, again, for the artifact near the ends). Thus, thanks to 
the "cleanness" of our annual series resulted from the suc- 
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Fig. 4. Hanning-windowed Fourier power spectrum showing the 
removal of (a) components II and III of Chandler wobble and (b) 
components I and IV of Chandler wobble from ILS-X-CW (see Table 
3a). 
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Fig. 5. Same as Figure 4, but for ILS-Y-CW (see Table 3b). 

cessful removal of the Chandler components, we found no 
evidence for the large variations reported in the literature (see, 
for example, Rochester [1973] and Lambeck [1980]; also com- 
pare Figure 7 with Dickman's [1981] Figure 3). This, of course, 
is indicative of a more or less stationary annual excitation 
function. 

5.3. Chandler Wobble 

By subtracting the Markowitz and the annual wobbles ac- 
cording to Tables ! and 2 from ILS-X and ILS-Y, we obtain 
the two Chandler series, ILS-X-CW and ILS-Y-CW, shown in 
Figures ld and 2d. Notice in Table 3 the close agreement 
between the corresponding estimates for period Q and ampli- 
tude obtained independently from ILS-X and ILS-Y. Note 
also that for all four components, ILS-X-CW leads ILS-Y-CW 
by an estimated phase angle close to 90ø; in fact, it is seen that 
90 ø is within one standard deviation of all four estimated 

phase differences. It seems that this coherent behavior of the 
four components is not consistent with the single-component 
hypothesis [see, e.g., Munk and MacDonald, 1960; Lambeck, 
1980], which considers the Chandler wobble as a single com- 
ponent with a fixed period and an amplitude modulated by a 
sequence of temporally and/or spatially random excitations. 
The steady, nearly circular, prograde path of the pole associ- 
ated with each component alone is shown in Figures 6c-6f. 

Figures le and 2e give the "synthetic" Chandler series, that 
is, the linear combination of the four components according to 
Table 3. Compare them with the observations, Figures ld and 
2d. The resemblance is, of course, not surprising, for it is 
simply a time-domain presentation of the successful removal 
(see Figure 3) of the spectral peaks belonging to the four 
Chandler components. 

The complex demodulate of the complex Chandler series 

z(t): (ILS-X-CW) + i(ILS-Y-CW) (6) 

at a "center Chandler period" of 432.00 days is shown as solid 
lines in Figure 8, which are practically the same as those 
obtained by Dickman [1981] (except for some unimportant 
phase conversions). Also shown in Figure 8 as dashed lines is 
the complex demodulate, similarly obtained, of the four- 
component synthetic Chandler series. Again, the close agree- 
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ment (except near the ends) is to be expected. The amplitude 
variation (Figure 8a) is, of course, nothing but a smoothed 
version of the envelope of the Chandler series. The phase vari- 
ation (Figure 8b), on the other hand, in effect reveals the cu- 
mulative deviation of the zero crossings (say) of the Chandler 
series from the zero crossings that a single component with 
period 432.00 days would have. The nearly 180 ø change in 
phase during 1920-1940 has been pointed out as suggestive of 
a phase reversal due to some sudden change in the (unknown) 
excitation mechanism [see, e.g., Fedorov and Yatskiv, 1965; 
Guinot, 1972]. However, our analysis here "resolves" the my- 
stery by showing that the apparent phase variation of the 
Chandler wobble is an inevitable consequence of the multiple- 
component nature of the Chandler wobble, a view advocated 
also by McCarthy [1974]. 

Next, we shall examine the empirical period-amplitude rela- 
tion proposed by Melchior [1957] [see also Munk and Mac- 

Donald, 1960, p. 151]: the period and amplitude of the 
Chandler wobble (at least up to the year 1950) are, to a certain 
degree, proportional. Here we shall employ the concept of 
instantaneous period (IP) and instantaneous amplitude (IA) 
[Munk and MacDonald, 1960], see Figure 9. Figure 10 gives 
the IP and IA sequences for the synthetic Chandler X series 
obtained numerically (those for the Y series are not shown 
because they are practically identical). It clearly shows a high 
positive correlation between IP and IA prior to 1950; the 
correlation coefficient is found to be 0.73 (or 0.76 for the Y 
series). Thus, again, our four-component model offers an "ex- 
planation" to the period-amplitude relation. 

After 1950, however, the IP-IA correlation diminished dras- 
tically and IP has remained fairly constant at around 435 days 
(Figure 10b). In fact, we do not see the large period variations 
during 1960-1975 reported by Graber [1976] [see also Carter, 
1981], who used the maximum entropy method (MEM) on 
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Fig. 7. Complex demodulate of the annual wobble (Figures l c and 
2c) at period - 365.25 days' (a) amplitude and (b) phase. 

overlapping 2.9-year segments of the International Polar 
Motion Service (IPMS) data. This discrepancy may have re- 
sulted from the method that Graber used; as pointed out 
earlier in section 2, MEM tends to give biased frequency esti- 
mates as used on such short records. 

6. FURTHER DISCUSSIONS 

1. The ILS data set has been known for its systematic 
errors due to a lack of observational continuity and uniform- 
ity as well as alterations in reduction procedures over the 
years [-see, e.g., Lainbeck, 1980]. Some of the noise is bound to 
find its way into the (rereduced) homogeneous data set used in 
our study. Indeed, a look at Figures 1 and 2 shows that the 
mean noise level is about as high as one third of the signal 
level of the annual wobble, or a quarter of that of the 
Chandler wobble. However, this does not immediately con- 
demn the data set. As stated in section 3, the Fourier transfor- 
mation "concentrates" a periodic component into a narrow 
frequency band, while it "spreads" a random noise over the 
whole spectrum. This has resulted in the 26-28 dB signal-to- 
noise ratio for the annual term, and 15-30 dB signal-to-noise 
ratio for the Chandler components (see Figure 3). In fact, these 
are the values used to obtain the standard deviations quoted 
in Tables 1-3. 

2. The multiple-component model for the Chandler 
wobble is certainly not a new invention. Chandler [1901a, b] 
[-see also Mulholland and Carter, 1982], through pre-1900 ob- 

0.4 
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0.2 

o.1- 

0.0- 

200. 

150. 

900 lb 20 30 40 50 60 7'0 8'0 
TIME (year) 

(a) 

9•30 1•) •0 30 40 50 
TIME (year) 

(b) 

60 70 80 

Fig. 8. Complex demodulate of the Chandler wobble at 
period = 432.00 days: (a) amplitude and (b) phase. The solid lines are 
for ILS-X-CW and ILS-Y-CW (Figures ld and 2d), the dashed lines 
are for the four-component synthetic Chandler series (Figures le and 
2e). 

servations, derived two periods for the then newly found 
motion: 428.5 days and 436.0 days; they most likely corre- 
spond to component II and III of our Table 3. Modern inves- 
tigators, using post-1900 ILS data, have constantly been haun- 
ted by the (at least apparent) presence of multiple periods as 
well [e.g., Yashkov, 1965; Colombo and Shapiro, 1968; Ped- 
ersen and Rochester, 1972]. Our present study certainly advo- 
cates this hypothesis, hopefully on a stronger ground. Gaposch- 

TIME 

Fig. 9. Schematic diagram illustrating the meaning of IA (instanta- 
neous amplitude) and IP (instantaneous period). 



10,306 CHAO' ANALYSIS OF POLAR MOTION USING ILS DATA 

0.4 

0.3 

0.2 

z 0.1 

0.0 
1900 10 20 30 40 50 60 70 

TIME (year) 

(a) 

n 420 xX•• I--: 

Z 410 

-- f X X 400 x x 

390 XxX 

1900 

I I I t I I I 

10 20 30 40 50 60 70 

TIME (year) 

(b) 

Fig. 10. The sequence of (a) IA and (b) IP of the X component of 
the four-component synthetic Chandler series. 

kin [1972], using a least squares analysis, has also identified in 
the polar motion from 1846 to 1970 four periodic terms: 
406.44, 426.67, 437.20, and 452.89 days. The rather striking 
agreement between his results (for 1846-1970) and Table 3 (for 
1900-1979) provides a partially independent evidence for the 
four-component behavior. On the other hand, Gaposchkin's 
[1972] Q estimates, in general, have higher absolute values 
than our values, and the corresponding amplitude estimates 
(reduced to the epoch 1900) differ by as much as 40%. This 
presumably can be attributed to the differences between the 
two data sets (as well as the methods of analysis) because, 
unlike the periods, the Q and amplitude estimates are indeed 
sensitive to noises and data inhomogeneities. 

3. The origin of the multiple Chandler periods, their exist- 
ence granted, may be perplexing. Theoretically, an elastic ro- 
tating earth model has only one free Chandler period. In fact, 
the Chandler wobble corresponds to a "singlet" normal mode 
of free oscillation belonging to an elastic rotating earth [Chao, 
1983], so the existence of multiple periods is certainly not a 
consequence of some spectral splitting phenomenon. The 
answer, then, presumably lies in the existence of inelastic 
layers in the earth (hydrosphere, asthenosphere, and outer 
core) and the coupling thereof with the elastic parts of the 
earth [see, e.g., Colombo and Shapiro, 1968; Zhang, 1982]. 
Whether this system is consistent with the observed four- 
component behavior of the Chandler wobble awaits further 
investigations. 

4. Numerically, the Q estimates for the Chandler compo- 
nents listed in Table 3 are, as with the annual wobble, those 
which achieve an optimum least squares fit to the data over 
the past 80 years. They ought not to be used, say, to extrapol- 
ate the time series in either direction; nor, from a geophysical 
point of view, should they be interpreted as the energy dissi- 
pation factor of the earth at Chandler periods. For one thing, 
they are quite different from one another, and some of them 

are negative (meaning growing amplitudes). Rather, they 
should be taken as reflecting the behavior of the excitation 
mechanism and, perhaps, the coupling between different com- 
ponents. As a matter of fact, to separate the effect of an un- 
known excitation function from that of energy dissipation 
numerically in an objective manner is rather difficult, if not 
impossible. As a result, the anomalously low Q estimates in 
the literature (as summarized by Rochester [1973] and Larn- 
beck [1980]) might be questionable. This is a problem that we 
have not attempted to address in this paper. 
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