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Abstract. This contribution discusses the problem of providing measures of significance of pre-
diction results when the predictions were generated from spatial databases for landslide hazard
mapping. The spatial databases usually contain map information on lithologic units, land-cover units,
topographic elevation and derived attributes (slope, aspect, etc.) and the distribution in space and in
time of clearly identified mass movements. In prediction modelling we transform the multi-layered
database into an aggregation of functional values to obtain an index of propensity of the land to
failure. Assuming then that the information in the database is sufficiently representative of the typical
conditions in which the mass movements originated in space and in time, the problem then, is to
confirm the validity of the results of some models over other ones, or of particular experiments that
seem to use more significant data. A core point of measuring the significance of a prediction is that
it allows interpreting the results. Without a validation no interpretation is possible, no support of the
method or of the input information can be provided. In particular with validation, the added value
can be assessed of a prediction either in a fixed time interval, or in an open-ended time or within the
confined space of a study area. Validation must be of guidance in data collection and field practice
for landslide hazard mapping.
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1. Introduction

This contribution deals with the issue of generating predictions from spatial data-
bases for landslide hazard mapping. In particular, it discusses the problem of
providing measure of significance of prediction results. For instance, if we consider
a spatial database containing maps of lithologic units, of land cover units, of topo-
graphic elevation and derived attributes (slope, aspect, etc.) and of the distribution
in space and in time of clearly identified mass movements, we can transform the
multi-layered database into an aggregation of functional] values to obtain an index
of propensity of the land to failure (Chung et al., 1995, Carrara et al., 1995, Leroi,
1996, Chung and Fabbri, 1998, 1999, Jibson et al., 1998). Assuming then that the
information in the database is sufficiently representative of the typical conditions
in which the mass movements originated (in space and in time), we can generate
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many numerical expressions of such a property using different mathematical model
and input variations. The problem then, is to confirm the validity of the results of
some models over other ones, or of particular experiments that seem to use more
significant data.

Such confirmation is not only to convince us of the degree of success in predict-
ing, but also to communicate to non-specialists the significance of the predictions
so that decisions can be taken about safer land uses as a consequence of the pre-
diction results. The issue of validation is broader than landslide hazard mapping
and it permeates the entire field of spatial data analysis. We will first cover the
terminology to isolate basic concepts of prediction modelling, the comparisons
between traditional and more quantitative models of hazard representation, the
ranking order for visualization of prediction results, several validation strategies,
and the prediction-rate curves in support of prediction interpretation. Two applic-
ation examples describe the strategy used in this research and provide a basis for
generalizing the approach to validation.

2. Definition and Terminology

Consider the construction of a landslide hazard map to identify the areas likely
to be affected by future landslides. The target pattern is then defined as the spatial
distribution of the areas to be affected by future landslides. The study area is defined
as the area where we wish to have information on the target pattern. Of course, it is
impossible to obtain the unknown locations of future events, future landslides that
have not yet occurred. The target pattern is an unobservable and binary spatial
pattern. Although we may know the characteristics and locations of past landslides
in the study area, they are NOT part of the target pattern under the definition.

Another important consideration of defining the target pattern is illustrated by
using future landslides of debris flow type. Suppose that we define as the target
pattern the whole area to be affected by future debris flows. The target pattern
consists of at least two separate and distinct sub-areas, the scarp area and the
deposit area. We assume that the scarp identifies where the landslide starts and
that the deposit area indicates where the landslide ends. The geomorphologic char-
acteristics of these two sub-areas are distinctly different. Hence, it is necessary to
define the set of the scarps of all the future landslides as the new target pattern
rather than set of the entire scars of the landslides. Without such redefinition of
the target pattern, the prediction problem may not be solvable. In Figure 1, the
landslides induced by the 1994 Northridge Earthquake in California were systemat-
ically divided into the scarps and the remaining areas by Chung and Jibson (2002).
The resulting prediction pattern should now identify the locations of the scarps of
future landslides from the information about the scarps of the past landslides. After
identification of the scarps of possible future landslides, simulations with cellular
automata (Packard and Wolfram, 1985) or similar techniques can be employed, for
example, to generate possible deposit areas of the future landslides.
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Figure 1. Scars of the past landslides induced by the 1994 Northridge Earthquake in Califor-
nia, U.S.A. The areas shown in black within the landslide bodies were considered as scarps of
the landslides.

While the target patterns are the unknown that we wish to have, the prediction
images are what we can generate for the target patterns using prediction models.
The prediction models are defined as logical or analytical procedures to construct
prediction images for given target patterns. They range from simple ad-hoc proced-
ures, to complex mathematical or statistical analyses, and to models based on an
expert’s qualitative knowledge. We attempt to generate prediction images, which
“approximate” as closely as possible the unknown and unobservable target pat-
terns. We define a prediction pattern as a thematic representation of the prediction
image to visualize and perceive it.

3. Traditional Models

Traditionally a geomorphologist, who is an expert on earth surface processes, con-
structs a landslide hazard map for identifying areas likely to be affected by future
landslides (i.e., a prediction pattern). This is to guide the decision makers for land-
use planning in the study area. From a limited number of field observations, the
scientist will produce a geomorphologic map showing the basic characteristics of
landforms. From that the expert has to identify typical situations (such as combina-
tions of landforms) that characterize the level of hazard as low, medium or high. A
qualitative hazard mapping north of Lisbon, in Portugal, was discussed by Zêzere
(1996a). It is an application based on a systematic inventory of mass movements
in the same region (Zêzere, 1996b). In that study, the number of past landslides
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in each landform unit simply determined the level of hazard. Panizza et al. (1998)
proposed a new legend for geomorphologic maps applied to hazard levels. In their
legend a separation was made between landforms, processes and deposits. Based
on the new legend, it seems possible to systematically produce hazard maps. Haz-
ard levels were constructed by classifying the observed landforms into gravitational
deposits and eroded features. Hence, it is difficult to assign quantitative scores or
values to these qualitative hazard levels.

Mathematically oriented geomorphologists and civil engineers have been trying
to construct deterministic models for slope stability by studying and interpreting
the physical processes of mass movements using variables such as slope angle,
soil cohesion, water saturation capacity, and shearing resistance. Using the models,
they have generated safety factor maps for slope failure (Terlien et al., 1995) and
the safety factor maps are used to represent the prediction patterns for future land-
slide hazard. While the hazard maps derived from geomorphologic maps usually
consisted of three to five levels of hazard, the safety factor maps can be shown in a
continuous scale.

To represent the predictions, Varnes (1984) introduced the term landslide hazard
“zonation” as a quantitative measure of landslide hazard (Varnes, 1984; Carrara et
al., 1995). Examples of geomorphologic maps and of the corresponding hazard
zonation maps can be found in Varnes (1984). Van Westen (1993) also discussed
the need to separate the basic themes from geomorphologic maps to represent in
a systematic manner the distribution of all the geomorphologic factors used in
hazard zonation. To produce a map showing landslide hazard zonation, the geo-
morphologic synthesis by experts should be a consistent and logical process. As the
number of landforms and other spatial information to be considered increases, it is
harder, if not impossible, to achieve data consistency. Though a geomorphologic
map containing the basic landforms emphasizes the geomorphologic processes, it
cannot include all related pieces of information such as slope, aspect and vegetation
even though they are used in its construction. However, if the related information is
significant to the hazard map, then it must be directly considered in a quantitative
evaluation of hazard and in the corresponding hazard levels to represent.

With respect to future landslide hazard, regardless of how the hazard prediction
maps were generated using the traditional models, the two main weaknesses of the
hazard maps by experts (either geomorphologists or civil engineers) are: (1) the in-
terpretation of the hazard levels of the maps; and (2) the “independent” verification
of the hazard maps. For example, suppose that a road is planned to go through a
“high hazard” area of a map based on a geomorphologic study. What does “high
hazard” mean? Can we link this “high” to the probability that a future landslide
will affect the intersecting portion of the road within the next 50 years? Without
estimating such a probability, the decision makers cannot perform an adequate
economic cost-benefit analysis to make the proper land-use planning. A similar
argument can be made for the safety factor map for slope failure. As we will see,
the most important question for the hazard maps is “how good are the prediction
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results with respect to the future landslide hazard?” Obviously, it is not clear yet
how we can verify the prediction in the maps.

4. Quantitative Models

For the past two decades, several quantitative spatial prediction models for identi-
fying hazardous areas to be affected by future landslides have also been developed
(Wang and Unwin, 1992; Chung et al., 1995; Carrara et al., 1995; Chung and Fab-
bri, 1998, 1999; Jibson et al., 1998). In these quantitative models, the hazard levels
of the prediction results were expressed in terms of mathematical functions such as
probability functions in a continuous scale. When the probability function is used to
express the hazard of future landslides, it appears that the numeric representations
can be interpreted as quantitative measures of the hazard. For example a pixel in a
quantitative hazard map generated using a probability function is assigned a value
of 60%. It may then be interpreted as “the estimated probability that the pixel will
be affected by a future landslide is 60%”. Although such an explicit statement is
desirable for a prediction map, the question is: “What assumptions are required to
make such a statement reasonable?”

Let us review the sentence “the estimated probability that the pixel will be
affected by a future landslide is 60%”. At a first glance, the sentence appears
reasonable, but it is insignificant without “future landslide” being connected to a
time period such as the next 30 years or the next 100,000,000 years. Without such
a time period, the statement is meaningless. If the 60% probability is for landslides
occurring during the next 30 years, then obviously we must avoid the area for any
future development. However if the probability is for the next 100 million years,
then we shouldn’t take the prediction so seriously.

The next question is: “What assumptions were made to estimate the 60% prob-
ability within the next 30 years?” In estimating the probability, an assumption that
there would be 7 future landslides in the study area would be significantly different
from an assumption that there would be 1,000 landslides in the area within the next
30 years. Similarly, the assumptions on the sizes of the future landslides play a
significant role in estimating probability. Without such assumptions on the number
(or its distribution) and the size distribution of future landslides, the estimation of
the probability is not possible. However, if the assumptions were extremely rigid
and/or too unrealistic, then the estimated probability would again be worthless.

Let us consider a prediction class R of the size of r km2 in a prediction pattern
for a study area, T of the size of t km2. To study the unknown probability that a
future landslide within the next 30 years will affect a pixel within this prediction
class, we must assume two values: (i) the target area, A to be affected by future
landslides is α km2, and (ii) the portion of future landslides of α km2 that has
occurred within that class is q.

For a given prediction class, the probability that a pixel within the class will
affected by a future landslide is then obtained by q/r. This probability should be
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Figure 2. The study area, T of the size of t km2, includes three prediction classes, high,
medium and low of a prediction pattern and the target area. We assume that the target pattern,
A to be affected by future landslides is α km2, the scarps of future landslides are known. Both
the high and medium prediction classes occupy 15% each of the study area but they predict
60% and 20% respectively of future landslides and the scarps of future landslides occupies
10% of the study area: rh = 0.15t , qh = 0.6α, rm = 0.15t , qm = 0.2α, rl = 0.7t , ql = 0.2α

and α = 0.1t . Therefore qhth/rhα = 4, qmtm/rmα = 1.33 and ql tl/rlα = 0.29.

compared with the probability of any pixel in the study area to be affected by a
future landslide, α/t . It is the same probability for a pixel in a prediction class
consisting of a random collection of pixels. To look at the “predictive power” of a
prediction class, the ratio:

qt

rα
, (1)

of q/r and α/t provides a measurement for the corresponding class and it is termed
“ratio of effectiveness” for the corresponding prediction class. If the ratio for a
prediction class is near 1, then it implies that the class consists of randomly selected
pixels and hence is an unsupportive prediction class. To make a “powerful and ef-
fective” prediction class, the ratio should be either very large or near zero regardless
of the type of the prediction model used to obtain a prediction pattern. From our
experience, the ratio of effectiveness should be either larger than at least 3 or less
than at most 0.2 for a prediction class to be significant. To indicate significantly
effective classes, the ratios are preferably larger than 6 or less than 0.1.

To illustrate the idea, Figure 2 includes three prediction classes, high, medium
and low of a prediction pattern and the target area in a study area. We assume
that the target pattern, the scarps of future landslides are known. Both the high
and medium prediction classes occupy 15% each of the study area but they predict
60% and 20% respectively of future landslides and the scarps of future landslides
occupies 10% of the study area: rh = 0.15t , qh = 0.6α, rm = 0.15t , qm = 0.2α,
rl = 0.7t , ql = 0.2α and α = 0.1t . Therefore qhth/rhα = 4, qmtm/rmα = 1.33
and qltl/rlα = 0.29. It implies that the medium and low classes don’t provide
effective prediction power. However, the high class provides reasonably effective
hazard area.

A very important point is that the probabilities cannot be discussed without two
assumptions on the size of the future landslides, α and their proportion in the class,
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Figure 3. The construction of a prediction map for future landslide hazard. The diagram
provides an example of the proposition and related symbolic relationships among the target
pattern, direct supporting pattern, indirect supporting patterns, and prediction model, image
and patterns.

q. Obviously, in real life, we do not have these two values. Through the validation
procedure discussed later, we will propose a method for realistically assessing these
values in real situations.

Our approach stems from the same needs to generate thematic maps based on
the same spatial data used by the experts. We refer our approach to the prediction
model as the “favorability function” approach (Chung and Fabbri, 1993), illustrated
in Figure 3. The favorability function approach requires the two assumptions that:
(i) the target pattern can be characterized by the geomorphologic spatial data, and
(ii) the events related to the target pattern will occur in the future under similar
geomorphologic circumstances.

However, we introduce here not only quantitative models and systematic spatial
data analysis, but also the “independent” validation of the prediction results with
respect to future landslides. Additionally, but most significantly, using the cross-
validation procedure, we illustrate how to estimate the probability that a pixel will
be affected by a future landslide within the next 35 years using La Baie study area
in the Canadian Province of Quebéc. Through this procedure, we will also provide
the exact assumptions that we make in estimating the probability.
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5. Visualization

When a landslide hazard map consists of three to five levels of hazard, it is trivial
to visualize such thematic representation on a computer monitor or on a printer.
However, the situation changes if a prediction image for a landslide hazard is
constructed using a mathematical prediction model by computing a predicted value
at each pixel in a continuous scale. In this case, by slicing the predicted pixel value
in the prediction image, a prediction pattern is obtained, and it can be subsequently
visualized and interpreted. How to slice it is not a trivial matter: it becomes the
next important step in modelling.

There are two ways of making the prediction classes (each class represents one
level of hazard) for a prediction pattern from the pixel values. (1) Equal-interval
classes. The range of all the pixel values is divided into a number of equal intervals.
The ranges of the intervals are identical and one class is assigned to each interval.
At each interval, the pixels whose values lie within the interval are assigned to the
class. The numbers of pixels in the classes are very different. (2) Ranking equal-
number classes. All pixels are sorted according the pixel value in descending order.
The total number of pixels is divided into a number of classes with equal number
of pixels. The first class consists of the pixels with the largest pixel values and the
next subsequent class is made up of the pixels with the next largest values. Each
class consists of the equal number of pixels (Chung and Fabbri, 1999).

Very frequently, the number of classes can be represented by an 8-bit value
ranging from 0 to 255. By assigning a color for each 8-bit value, a “pseudo-color
look-up table” is constructed. Using the look-up table, the 8-bit prediction pattern
is then visualized on a computer screen or a printer.

Suppose that we have obtained two prediction images from two different pre-
diction models, and we wish to compare these two images. The pixel values from
two prediction images may have two different meanings. For instance, while the
predicted values in a probability model (Chung and Fabbri, 1999) represent the
probability values, the pixel values in a fuzzy set model (Chung and Fabbri, 2001)
are the membership function scores. In this instance, the two pixel values are not
compatible. For an objective and proper comparison of the prediction images, we
must first obtain the two corresponding prediction patterns, which are compatible.
If the prediction patterns are obtained from the equal-interval classes in way (1)
above, then the comparison becomes very difficult because the two patterns may
not be compatible except for some special cases. However, if we obtain the two
prediction patterns using the ranking equal-number classes in way (2) above, then
their comparison becomes a trivial matter. That is, the numbers of pixels in the
first class (with the highest values) of the two prediction patterns are the same and
the sizes of the two first classes are the same. These two classes also represent the
most hazardous areas for future landslides regardless of the models. If we expect
fewer future landslides in one of these first classes than in the other, then we could
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conclude that the model with the first class with more landslides provides a better
prediction.

Consider two predicted values of two pixels in the prediction image. Because
both of the predicted values in the prediction image are subjected to the same
assumptions, the relative hazard from the predicted values can be maintained (even
if there may be a problem with the assumptions). It implies that the ranking of the
predicted pixel values in the image is more significant than the original predicted
values. It is one of many reasons why we prefer to use the second ranking equal
number classes to generate a prediction pattern. We will exploit the ranking to
obtain a prediction pattern.

6. Ranking Procedure

In the second ranking equal number classes for slicing to obtain a prediction pattern
from a prediction image, instead of the original predicted value at each pixel, we
use the ranking of the predicted value. Suppose that we have 1,000,000 pixels in
a study area. From an image, we have obtained 1,000,000 predicted values, one
at each pixel. We sort all of the 1,000,000 values in decreasing order. Then for
each pixel, we replace the predicted value by the corresponding rank divided by
the number of pixels in the entire study area, i.e., 1,000,000. The revised value
of the pixel with the largest predicted value, the most hazardous predicted pixel,
has the value 1, and the pixel with the smallest pixel value has value of 0.000001
(= 1/1,000,000). We define it as a “ranking” process in modelling and the revised
values ranging between 0 and 1 are termed “ranks”. After the ranking, by slicing
these revised values between 0 and 1, we obtain a prediction pattern.

At each pixel, we have two values, the original predicted value and the corres-
ponding rank. To look at the relationship, we can make a scatter plot of these pairs,
one point in the scatter plot for each pixel. Suppose that we assign the ranks to
the x-axis and the original predicted values to the y-axis in the scatter plot. Then
the dots will form a monotone non-decreasing plot. From this plot, we always
obtain the exact relationships between the ranks and the original values. Figure 4
illustrates the relationship in the prediction image for Figure 6a.

Suppose that the study area consists of 400 km2 with 1,000,000 pixels with
20 m × 20 m resolution. Suppose that it is economically and socially reasonable
to delineate 4 km2 as being vulnerable to landslide hazards, 4 km2 which will be
sterilized and effectively lose all their economic value. Therefore, from the exist-
ing geoscience spatial data, we should identify the most hazardous 4 km2 areas.
Regardless of the prediction model used, we should assign the 10,000 pixels with
the highest predicted values to the hazardous area. Using the ranking, the selection
of the 10,000 pixels becomes a trivial task.
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Figure 4. Relationships between the rank order of predicted value pixels in the image of Fig-
ure 6a, and the log10 of the predicted values that were plotted instead of the original predicted
values.

7. Validation

In prediction modelling, the most important and the absolutely essential compon-
ent is to carry out a validation of the prediction results. Without some kind of
validation, the prediction model and image are totally useless and have hardly
any scientific significance. We here present several, rather simple, procedures for
the validation, so that the prediction results can be interpreted meaningfully with
respect to the future landslide hazard.

After a prediction image is obtained, the proper validation should be based on
the comparison between the prediction results and the unknown target pattern, the
areas affected by future landslides. Let us consider that the study area contains the
past landslides. Because the target pattern (the future landslides) is unknown, a
direct comparison with the target pattern is not feasible. The next best thing to do
is to mimic the comparison by using a part of the past landslides as if it represents
the target pattern. To mimic the comparison, we must restrict the use of all the
data of the past landslides in the study area. By partitioning the data, one subset of
data is used for obtaining a prediction image; the other subset is compared with the
prediction results for validation.

Without the partition, it would not be possible to validate the results. Of course,
the comparison of the prediction results with the un-partitioned past landslides in
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the study area is totally meaningless as far as the interpretation of the prediction
results is concerned. The partitioning of the past landslides is the corner stone of
the validation techniques proposed here.

TIME PARTITION

In this procedure, we assume that we have obtained the time and space distribution
of the past landslides over the entire study area. When we use this time-partition
technique, then we are able to estimate the probability of the occurrences of future
landslides within a certain time constrain such as “for the next 35 years”. It consists
of four steps:

Step 1: Construct a prediction model and generate a prediction image using all
the past landslides over the study area.

Step 2: Based on an air-photo mosaic of a given year, suppose that we divide
the past landslides into two time periods: those that have occurred prior to that year
and the remaining ones that occurred after that year.

Step 3: Using the same prediction model in Step 1 but using the landslides of
the first period only, generates the prediction image.

Step 4: Obtain statistics, termed the prediction-rate curve, by comparing the
prediction results in Step 3 with the distribution of the occurrences of the latter
period. A detailed discussion on the prediction-rate curve will be presented in the
Section 7.

The prediction-rate curve obtained in Step 4 is used for interpretation of the
prediction image obtained in Step 1, although the curve was obtained by comparing
the prediction image generated in Step 3 and the occurrences of the latter period. To
obtain the statistics required for the validation of the prediction results, we assume
that the year of a prediction study is the year of the division (when the air-photo
was taken). It means that all the landslides that have occurred in the latter period
had not yet occurred, and all the past landslides must be pertinent to that year.
Then, while the landslides that have occurred in the first period constitute the past
landslides, the distribution of the landslides that have occurred in the latter period
could be regarded as a partial target pattern, the “future” landslides.

Figure 5 illustrates the location of the past landslides in a sub-area in La Baie,
Quebec, Canada (Chung and Perret, 2002). The 5 white dots represent the land-
slides that have occurred before 1964 and the 24 black dots are the landslides that
have occurred in 1976 and 1996. Two of the 24 latter landslides had occurred at
two of the same locations of the 5 earlier landslides. Using all the landslides that
have occurred in 1964, 1976 and 1996, we have constructed a prediction model
based on the likelihood ratio method (Chung and Fabbri, 1998) and a prediction
pattern of the image is shown in Figure 6a.

To interpret the prediction results in Figure 6a with respect to the landslides to
come during the next 35 years, we have obtained the prediction-rate curve shown
in Figure 7. To generate the curve, we have generated the second prediction image
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Figure 5. The distribution of landslides in part of the La Baie study area in Quebec, Canada.
The 5 white dots locate the landslides of the year 1964; the 24 black dots those of 1976 and
1996.

based on the same likelihood ratio model using the 5 landslides that have occurred
in 1964. This second prediction pattern based on five 1964 landslides is shown in
Figure 6b and it was compared with the 24 landslides that have occurred in 1976
and 1996 to generate the “prediction-rate curve” shown in Figure 7. Although the
prediction-rate curve was obtained from Figure 6b, it should be used to interpret
the prediction in Figure 6a.

Ideally the tangents (slopes) of prediction-rate curves should be monotonic-
ally decreased, but the empirical prediction-rate curves from the cross validation
methods don’t usually satisfy the condition, as is the case in Figure 7. From the
prediction-rate curve, the slope of the curve in a given prediction class is, in fact,
the ratio of effectiveness defined in (1). From the prediction-rate curve in Figure 7,
the ratios of effectiveness (the slopes) for several selected prediction classes were
computed and shown in Table I. If the prediction-rate curve satisfies the tangent
monotone decreasing condition, then the ratios of effectiveness should be also
monotonically decreasing, from the most hazardous class to the least hazardous
class.

From Table I, only three classes, 0–2.5%, 2.5–5% and 50–100% in Figure 6.a
are significantly effective classes and 5–10% is reasonably effective prediction
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Figure 6a. Prediction pattern in the La Baie area, Quebec, obtained by the likelihood method
using all the 29 landslides (both white and black dots) of 1964, 1976 and 1996.

Figure 6b. Prediction pattern in the La Baie area, Quebec, obtained by the likelihood method
using only the 5 landslides (white dots) of 1964, also shown in Figure 5. The landslides of
1976 and 1996 (black dots) are used to evaluate the prediction.
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Figure 7. Prediction- and success-rate curves for the La Baie study area, Quebec. The suc-
cess-rate curve was obtained by comparing Figure 6a and the 29 landslides that have occurred
in 1964, 1976 and 1996. The prediction-rate curve was obtained by comparing Figure 6b
and the 24 landslides that have occurred in 1976 and 1996. To interpret the Figure 6a, the
prediction-rate curve, not the success-rate curve should be used. As shown in Table 1, the pre-
diction classes within the black and gray bars in the X-axis are the significantly and reasonably,
respectively effective prediction classes.

Table I. Ratios of effectiveness for sev-
eral selected prediction classes in Figure
6a. The corresponding prediction-rate
curve is shown in Figure 7

Classes Ratio of effectiveness:

qt/rα

0–0.025 7.32

0.025–0.05 6.96

0.05–0.1 3.22

0.1–0.2 0.72

0.2–0.3 1.99

0.3–0.4 1.73

0.4–0.5 0.28

0.5–1.0 0.02
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class. All other classes in between 10–50% don’t provide enough information for
the prediction of future landslides for the next 35 years.

In contrast with the prediction-rate curve, the “success-rate curve” in Figure 7
was obtained by comparing the prediction image in Figure 6a and the distribution
of all the 27 landslides that have been used to generate Figure 6a. More discussion
on the prediction- and success-rate curves will be made later.

To validate a prediction image for future events, time partitioning is the most
natural and convincing strategy and hence we recommend it in practice whenever
possible. We can easily generalize these two partitions to several time periods.

7.1. SPACE PARTITION

Here we also assume that we have obtained the distribution of the past landslides
over the entire study area. We divide the entire study area into two separated sub-
areas, A and B. We select one of two sub-areas to construct a prediction model and
the other to validate the prediction. When we use this space-partition technique,
then we are able to extend the current prediction model in the study area to the
surrounding areas or similar geologic areas. To illustrate the procedure, we have
chosen a small area in the Northridge landslide study by Chung and Jibson (2002),
which is shown in Figure 8. There are 331 and 314 landslides induced by the
1996 Northridge earthquake in the “left-image” and the “right-image” in Figure
8, respectively. In that illustration, we have selected the “left-image” as a study
area. A prediction model is constructed based on the study area A (left-image)
including the past landslides in A. The prediction image is generated in B using
the model built from A. The prediction image in B (right-image) is now compared
with the distribution of the landslides occurrences of B.

In the Northridge landslide prediction study, we had used three images of slope
angles, aspects and elevations of a 10 m × 10 m resolution DEM and the bedrock
geology map information. Using the likelihood ratio model as in the time partition
case, (Chung and Fabbri, 1998) we have constructed a “left” prediction model
based on the quantitative relationships between 331 landslides and the three DEM
images and bedrock geology in the left-image. Based on the left prediction model,
we have generated a “from-left” prediction image using the three DEM images and
the bedrock geology in the “right-image”. A prediction pattern using the ranking
equal number classes from the “from-left” prediction image was obtained and is
shown in Figure 9a. In the illustration we have also overlaid the 314 landslides that
had occurred in it. The comparison between the 314 landslides and “from-left”
prediction image in Figure 9a provides the statistics and the prediction-rate curve
shown in Figure 10 to evaluate the “from-left” prediction model.

In contrast with the prediction pattern in Figure 9a, we have constructed a
“right” prediction model and the prediction pattern shown in Figure 9b based on
the quantitative relationships between 314 landslides and the three DEM images
and bedrock geology in the right-image. In Figure 9b we have then overlaid the
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Figure 8. Distribution of landslide scars (bodies) and scarps (trigger areas) in part of the
Northridge study area of California (USA), here subdivided into a left image and a right image.
The background is a shaded relief image.

314 landslides that have used for the “right” prediction model and image. The
comparison provides the statistics to evaluate the “right” prediction model. The
right prediction model and the corresponding statistics from the comparison are
not really for prediction but they are for “fitting” model and statistics. Table II lists
the ratios of effectiveness for the predictions in Figure 9a and the corresponding
prediction-rate curve in Figure 10.

The validation is studied from the comparison. We can easily generalize these
two partitions to several different spatial partitions.

7.2. RANDOM PARTITION

Identical to the time partition, the next strategy again consists of four steps and
assumes that the past landslides in parts of the study area have not yet occurred.
The only difference is that here we randomly divide the past landslides into two
groups, instead of two time periods. We can easily generalize these two partitions
to several random partitions (Fabbri et al., 2003). Another generalization can be
a removal of one landslide at a time and evaluate the prediction at the removed
landslide site. We repeat the evaluation for each occurrence.

8. Prediction Rate and Success Rate

In all the three partitions of landslides for the validation procedure, we have used
only a part of the past landslides. In the La Baie study, only the 5 landslides that
have occurred in 1964 were used to generate the prediction pattern shown in Figure
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Figure 9a. Landslide hazard prediction pattern in the right sub-area obtained by the likelihood
ratio method using the data from the left side sub-area in the Northridge study area, California.
The distribution of the landslides shown in black was NOT used to generate this prediction.
The prediction-rate curve in Figure 10 was obtained by comparing this prediction map and the
landslides shown in black.

6b. By comparing the prediction results and the locations of the 24 landslides that
have occurred in 1976 and 1996, we obtain the necessary statistics, which are
shown as a prediction-rate curve in Figure 7. The curve is uniquely determined
for each prediction image and it represents the unique measure of validation of the
corresponding prediction image.

In the Northridge landslide study, instead, only the 331 landslides that have
occurred in the left-image were used for prediction modelling. The comparison
of the prediction image with the distribution of the 314 landslides (not used in
the modelling) that have occurred in the right-image in Figure 9a generates the
prediction-rate curve shown in Figure 10.

The “success-rate curve”, on the other hand, is based on the comparison
between the prediction image and the landslides used in the modelling. The pre-
diction pattern in Figure 9b was based on the statistical relationships between the
distribution of the 314 landslides and the three DEM images and the geological
map information in the right-image. The success-rate curve was obtained by the
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Figure 9b. Landslide hazard prediction pattern in the right sub-area obtained by the likelihood
ratio method using the data from the right side sub-area in the Northridge study area, Califor-
nia. The distribution of the landslides shown in black was used to generate this prediction.
The success-rate curve in Figure 10 was obtained by comparing this prediction map and the
landslides shown in black.

comparison between the 314 landslides and the prediction pattern in Figure 9b.
The two curves for the Northridge study are shown in Figure 10.

While the success-rate measures a goodness of fit assuming that the model is
“correct”, the prediction rate provides the validation of the prediction regardless of
the prediction model. Because we assume that the model is correct, we expect that
the success rate is better than the prediction rate for any given study, as can be seen
in both Figures 7 and 10.

To interpret the curve for a prediction image, consider a point (0.1, 0.52) on the
curve in Figure 7. For future landslides, if we take the most hazardous 10% area
(0.1) of the corresponding prediction image in Figure 5, then we are estimating
that 52% (0.52) of all future landslides within the next 35 years will be located in
the delineated area. Therefore, if we wish to delineate areas, which should identify
at least 52% of the future landslides to come within the next 35 years, then we
must declare 10% of the study area (purple and pink colored areas) a hazardous
area (Figure 6a). As also shown in Table II, these areas are the effective prediction
classes.



VALIDATION OF SPATIAL PREDICTION MODELS FOR LANDSLIDE HAZARD MAPPING 469

Figure 10. Prediction- and success-rate curves for the right-side sub-area. Landslide hazard
prediction pattern in the right sub-area obtained by the likelihood ratio method using the data
from the left side sub-area in the Northridge study area, California. The success-rate curve
was obtained by comparing Figure 9b and the landslides that have occurred in the right-side
sub-area. The prediction-rate curve was obtained by comparing Figure 9a and the landslides
that have occurred in the right-side sub-area. To interpret the Figure 9a, the prediction-rate
curve, not the success-rate curve should be used. As shown in Table II, the prediction classes
within the black and gray bars in the X-axis are the significantly and reasonably, respectively
effective prediction classes.

It is extremely important to notice that the prediction-rate curve relates ob-
viously to the number of the future landslides and to the probability of the
occurrences of future landslides. As discussed in Chung and Fabbri (2002), if we
wish to link the prediction-rate curve to the probability statement regarding the
occurrences of the future landslides, then we must make further assumption on the
number and the size of future landslides expected within the next 35 years in the
study area.

If a prediction image was generated randomly, then the prediction-rate curve
should be the straight line connecting two points, (0, 0) and (1, 1). The slope of the
straight line is constantly 1 and hence the ratios of effectiveness of the all prediction
classes are also 1. If a prediction image has any significance, then the prediction-
rate curve should be far above the straight line. It implies that if the most hazardous
10% area in Figure 6a was selected randomly, then this 10% area should predict
only 10% of the future landslides, not the 52% shown in Figure 7.
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Table II. Ratios of effectiveness for sev-
eral selected prediction classes in Figure
9a. The corresponding prediction-rate
curve is shown in Figure 10

Classes Ratio of effectiveness:

qt/rα

0–0.025 9.96

0.025–0.05 8.16

0.05–0.075 3.32

0.075–0.1 3.72

0.1–0.2 0.8

0.2–0.3 0.35

0.3–0.4 0.23

0.4–0.5 0.01

0.5–0.6 0.25

0.6–0.7 0.85

0.7–0.8 1.15

0.8–1 0.035

9. Concluding Remarks

This contribution has presented strategies for validating the results of models of
hazard as functions of a multi-layered spatial database. The importance of valid-
ating the results of predictions, however, is broader than the specific application
example here considered. Confirmation of the significance of the model results is
critical in all spatial data analyses for which decisions are expected on a multi-
purpose use of space for human activity. For landslide hazard, in addition, the
usage of the stability of the prediction rates through time is of a far from trivial
significance and warrants extensive research in many case studies and regions in
different climates and geologic settings.

We have discussed examples of time, space and random partitions of the past
events. They correspond to different data-dependent predictions and therefore
provide distinct types of prediction patterns and of corresponding interpretations.
As a consequence of applying a validation strategy, the requirements become ex-
plicit of the data for prediction models. The added value of the data resides on the
prediction-rate curve that also represents the efficiency of the prediction classes of
the prediction patterns.

What has become evident is that the strength and therefore the reliability of
a prediction can only be based on the previous prediction rates. When looking
into the future, only that strength allows us to take the responsibility of making
statements on what is likely to happen. When considering the spatial distribution
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of the predicted relative hazard intensities, only that strength can prioritize spatial
decisions.

We might have a broader expertise or a deeper intuition, however, we are unable
to prove or convince that such a non-validated prediction is any better than another.
The strategy proposed in this contribution wants to set up the terms to correctly
apply quantitative models to generate, visualize and validate predictions by parti-
tioning the database in time or in space. Ranking is the analytical technique for
assessing and empirically comparing the results of the different predictions. Such
results, evidently, are only meaningful in relative terms.
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