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ON THE EXCITATION OF THE EARTH'S POLAR MOTION 
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Abstract. One of the conclusions reached by recent studies 
of Barnes et al. and later Hide was "that atmospheric excita- 
tion alone was sufficient to account for the observed polar 
motion over (the studied) period, that there is apparently no 
need to invoke substantial excitation either by the fluid core 
or... earthquakes." The purpose of the present paper is to 
point out that their argument that led to the above conclu- 
sion is unjustifiable (hence whether the conclusion is in reali- 
ty true or not is still an open question). I demonstrate this 
through a physical "thought" experiment and a numerical 
simulation. In essence, they show that if we want to compare 
a geophysically observed excitation function •a(t) with the 
excitation function deduced (via deconvolution) from the 
polar motion observation re(t), we should do so directly (the 
"direct approach"). To compare re(t) with the polar motion 
computed (via convolution) from fa(t) (the "integration ap- 
proach"), as Barnes et al. and Hide did, is misleading. 

Introduction 

The motion of the Earth's rotation axis with respect to the 
geographical reference frame, known as the polar motion, 
has been observed for nearly a century now. It consists 
mainly of an annual wobble and a 14-month Chandler wob- 
ble. The annual wobble is a forced motion believed to be 

caused by seasonality in the atmosphere and hydrosphere. 
The Chandler wobble is a mode of the Earth's free oscilla- 

tion which has been, and is being, continually excited. The 
evidence is two-fold: (i) without excitation the Chandler 
wobble would have died away a long time ago due to energy 
dissipation in the Earth, and (ii) the observations do show 
changes in the amplitude and phase of the Chandler wobble. 
However, despite decades of effort by many investigators, 
the major excitation source(s) for the Chandler wobble still 
remain a mystery. 

In a recent study, Barnes et al. [1983] made, among other 
things, a detailed comparison of the polar motion with 
global meteorological data for the period 1 / 1981 - 4/1982 
(about 1.1 Chandler periods in length). One of the main con- 
dusions they reached was "that atmospheric excitation alone 
was sufficient to account for the observed polar motion over 
that period, that there is apparently no need to invoke 
substantial excitation either by the fluid core or... earth- 
quakes" (henceforth referred to as the CONCLUSION). 
Hide [1984] later extended this analysis to include 12/1979- 
2/1984 (about 3.6 Chandler periods in length), endorsing the 
same CONCLUSION. The importance of these work is 
quickly being recognized. Unfortunately, due to a stumble in 
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their reasoning, the CONCLUSION is unjustified. My argu- 
ment is as follows. 

A "Thought" Experiment 

Let us consider the following "thought" experiment. Sup- 
pose we place two identical, heavy pendulums some distance 
apart in a turbulent wind. We set the pendulums in motion 
starting from the same initial conditions and record their 
motions rni(t) and m:(t) for a few cycles. Upon close ex- 
amination, we notice that the two functions rn•(t) and m:(t) 
are not exactly the same -- they have been perturbed by 
"random" excitation fucntions •(t) and •:(t) of the wind, 
respectively. Yet by and large m•(t) and rn:(t) look rather 
alike (and incidentally, rather smooth). Can we then con- 
clude that the two excitation functions •(t) and •:(t) are the 
same, at least approximately? The answer, of course, is 
"no" because the observed motions rni(t) and m:(t) are 
predominantly a free motion set off by the initial conditions. 
As long as the initial conditions are the same, we will always 
have m•(t)= m:(t) regardless of how different •(t) an 
are. In other words, the observed motion re(t) is insensitive 
to the excitation function f(t). Mathematically, re(t) is the 
convolution of •(t) with the pendulum's free motion mo(t ). 
No matter how "rugged" •(t) is, its convolution with mo(t ) 
will yield a rather smooth re(t) which, within a few cycles at 
least, does not differ much from mo(t ) itself (for details see 
discussions pertaining to Equation 1 below). With known 
too(t), we can recover f(t) from re(t) via deconvolution. The 
point here is that if we want to compare •(t) with •:(t), we 
should do so directly. Comparing m•(t) and m:(t) instead is, 
to say the least, misleading. 

Back to Polar Motion 

The swing of the pendulums in the above example is 
physically analogous to the Earth's polar motion. The latter 
is being excited (by some unknown means) just as the pen- 
dulums were perturbed by the turbulent wind. The only (for- 
mal) difference is that the functions are now complex-valued 
functions reflecting the 2-dimensional nature of the polar 
motion. To be more specific, the observed polar motion re(t) 
can be expressed [c.f. Munk & MacDonald 1960, p. 46] as 
the sum of an "initial condition" term (see below) and the 
convolution of some (unknown) excitation function f(t) 
with the free Chandler wobble too(t), which is the impulse 
response of the Earth filter: 

m(t) = m(O)exp(iat) + •k(O * mo(O. (1) 

where m(0) is the initial position m(t) at t =0, a = 2•r/(435days) 
is the Chandler frequency, and the asterisk denotes temporal 
convolution. Note that for simplicity we have taken a to be 
real-valued since the energy dissipation within a few cycles is 
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Fig. 1. A summary of procedures and terminology used in 
comparing meteorologic and geodetic observations. 

negligible; hence mo(t ) is taken to be a circular motion 
(around the North Pole) with angular frequency o. The first 
term on the right-hand side of Equation (1), m(O)exp(iot), 
corresponds to the complementary (or "transient") solution 
to the equation of motion, whereas the second term 
•k(t)*rno(t ) corresponds to the particular (or "forced") solu- 
tion. Loosely speaking, as long as •k(t) is random and not ex- 
ceptionally large (c.f. the numerical experiment below), what 
we see in re(t) is mostly (the smooth) m(O)exp(iot), with "jig- 
gles and wiggles" arising from (the rugged) •k(t) in the form 
of •k(t),mo(t ). Thus the point to stress once again is that, as 
in the above though experiment, rn(t) is insensitive to •k(t). 

The excitation fun/gti-0•-•t) can be deduced from the 
observed rn(t) via deconvolution [see, e.g., Lambeck 1980, 
p. 61]. The geophysical problem is to compare this deduced 
•k(t) with geophysical events/variations. What Barnes et al. 
[1983] and Hide [1984] did was an attempt to identify •k(t) 
with the atmospheric excitation function •k,(t) obtained from 
global meteorological data (where the subscript a denotes 
"atmospheric"). Here we shall not distinguish between our 
•k function and their x function since the difference is 
numerically trivial. In keeping with their terminology, I shall 
make use of the terms "direct approach" and "integration 
approach". The former refers to the comparison between 
•k(t) and •k,(t), whereas the latter refers to the comparison 
between m(t)and rn,(t), rn,(t) being the computed polar mo- 
tion for 4,,(t) using Equation (1). Figure 1 summarizes the 
procedures and terminology. Unfortunately, the direct ap- 
proach conducted by Barnes et al. [1983] and Hide [1984, see 
also IUGG/IAU SSG 5-98, Bulletin No. 1, 1984] are far 
from conclusive (also see below). So they turned to the in- 
tegration approach. By empirically choosing an initial condi- 
tion for m,(t), they found m(t)= m,(t). Then, based on this 
fact, they reached the CONCLUSION which essentially 
states that •b(t)--•b,(t). Now, in light of the thought experi- 
ment and the above arguments, it should be clear that, while 
the integration approach is itself legitimate, to draw the 
CONCLUSION from it is unjustifiable because, to reiterate, 
rn(t)= rn,(t) by no means warrant •k(t)= •k,(t). 

The analogy between the polar motion situation and the 
thought experiment is actually not all that straightforward. 
This is because the atmospheric •k•(t) is not random -- it has 
a strong annual component (and perhaps a semi-annual 
component as well). Consequently we should not expect re(t) 
and m,(t) to simply resemble the circular motion 
rn(O)exp(iot). Instead, the system being linear, they should 

both resemble the sum of m(O)exp(ioO and an annual wob- 
ble. This is exactly what Barnes et al. [1983] and Hide [1984] 
found. In particular, the large change in the amplitude of the 
polar motion during the studied period is simply part of the 
-6.4-year beating phenomenon between the annual wobble 
and the Chandler wobble. However, this does not alter the 
above physical argument about the Chandler wobble. The 
resemblance between re(t) and rn,(t) says little, if anything, 
about the excitation of the Chandler wobble, and certainly 
does not lead to the CONCLUSION in any case. It merely 
means that it is the annual wobble that can be largely ac- 
counted for by the atmospheric excitation (a well-known 
fact) and that the initial conditions rn(0) chosen empirically 
by Barnes et al. [1983, for their Figure 10] and by Hide 
[1984, for his Figure 4] were numerically proper. Incidental- 
ly, exactly how much of the annual wobble can be accounted 
for by the atmospheric excitation during the studied period is 
not clear from their analysis, however. The conventional 
method is to compare the two annual excitation vectors 
deduced respectively from •b(t) and •k,(t). The difference vec- 
tor between them then indicates the contribution to the an- 

nual wobble excitation from other sources (for example, the 
hydrosphere). 

Now let us come back and discuss the direct approach 
which does compare •k(t) and •k•(t) directly. In the time do- 
main, both •k(t) and •k•(t) have clear annual signals (especially 
in the y-component) -- this is expected as said above. But as 
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Fig. 2. Two sets of computer-generated excitation fucntions 
used as input to generate the polar motions in Figure 3. They 
contain identical annual terms but independent zero-mean, 
Gaussian random noise series. 
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Fig. 3. The polar motions generated (using Equation 1) by 
the excitation functions in Figure 2 [solid curve for Fig 2(a), 
dotted curve for Fig 2(b)]. 

Figure 9 of Barnes et al. [1983] shows, the resemblance stops 
there. That is, apart from an annual trend the resemblance 
between •(t) and •a(t) is actually rather poor. In a sense, this 
should be no surprise, either, because even if •(t)= •a(t) in 
reality, their time-domain comparison in practice is unlikely 
to be fruitful. The reason is the following. •o(t) may have, 
for example, strong semi-annual and even "7-week" signals 
whereas (the deduced) •(t) does not. The latter is because 
these components, unlike the annual component which is 
close to the 14-month resonance, have been dynamically sup- 
pressed and observationally overwhelmed by noise and, 
hence, cannot be recovered to above the noise level by 
deconvolution. Further, but no less serious, problems arise 
from the noise (especially high-frequency noise) being great- 
ly enhanced by deconvolution. These, however, should not 
intimidate us in the search of correlation between f(t) and 
f,(t) for Chandler wobble, as long as we do it in the frequen- 
cy domain. The latter calls for a coherence study concen- 
trated on the Chandler frequency band. Unfortunately, the 
time series of Barnes et al. [1983] and Hide [1984] are much 
too. short to allow reasonable frequency resolution because a 
complete resolution of the annual and the Chandler wobbles 
requires at least 6 years of data. The work by Dickey et al. 
[1984], using 8-year worth of data, may shed some light in 
this regard. However, without removing the annual compo- 
nent from the data, their results concerning the Chandler 
wobble are still inconclusive. 

I should point out that a similar argument has been allud- 
ed to in an earlier work by Wilson & Haubrich [1977], where 
they questioned the validity of the conclusion of O'Connell 
& Dziewonski [1976]. O'Connell & Dziewonski [1976], by 
means of an integration approach, reached the conclusion 
that the Chandler wobble can be accounted for by, ironical- 
ly, earthquakes. Wilson & Haubrich [1977] examined their 
excitation functions in a direct approach (in the frequency 
domain), and found no evidence to support such an asser- 

tion. The moral here is, again, the integration approach is 
misleading. 

A Numerical Experiment 

Finally, I shall now present a numerical simulation, the 
purpose of which is to show explicitly the "indifference" of 
re(t) toward the perturbing f(t). I constructed a hypothetical 
excitation function •(t)= (•bx(t),•b•(t)) in the form 

½x(t) = Ax cosCot + Ox) + Nx(t), 

= cosCot +o 0 + 
(2) 

In (2), Nx(t ) and Ny(O denote two computer-generated, zero- 
mean, Gaussian random series with standard deviations S x 
and Sy, respectively, and the sinusoidal terms represent the 
annual excitation [co = 2•r/(365days)]. In order to have my 
•(t) closely resemble Hide's Figure 3 (although this is by no 
means essential in making the point), I liberally chose 
A x = 0.08, A• = 0.3, Ox = O• = 5•r/6, Sx = S• = 0.23, and a total 
time span of 4.2 years (at 5-day intervals). Some slight 
editing on Nx(t ) and Ny(O were made as follows. First, I 
reduced those points with absolute values exceeding 2.3 stan- 
dard deviations by a factor of 2.3. This alleviates the ex- 
tremely out-lying points in Nx(t ) and Ny(O. Secondly, I least- 
squares fitted a mean and a linear trend to Nx(t) and Ny(O 
and subsequently removed them to make certain that Nx(t ) 
and Ny( 0 are truely zero-mean and trendless. The resultant 
•x(O and •y(0 are displayed in Figure 2(a). Note that Figure 
2 does grossly resemble Hide's Figure 3, except for a static 
term (especially in •y(0) which has no physical importance. 
Then, with the initial condition m(0)= (0.7,0) which I again 
chose liberally, I performed the computation (1). The resul- 
tant polar motion m(t) that the hypothetical excitation func- 
tion (2) would generate is shown as the solid curve in Figure 
3. Then I repeated the same procedure with a completely in- 
dependent set of Nx(t ) and Ny(t), similarly edited, while 
everything else stays the same (see Figure 2b). The polar mo- 
tion m(t) thus generated is shown as the dotted curve in 
Figure 3. Notice, incidentally, how well Figure 3 takes after 
Hide's Figure 4 (apart, again, from a trivial static offset). 
The important point, however, is that the solid surve and the 
dotted curve in Figure 3 follow each other closely. In fact, as 
is evident from the time marks in Figure 3, the closeness is no 
worse than that in Hide's Figure 4. Yet another feature 
shared by both Figure 3 and Hide's Figure 4 is the gradual 
departure of the two curves (in both amplitude and phase 
angle). This is consistent with the random-walk nature of the 
polar motion arising from integration of random excita- 
tions. In any event, this numerical experiment undoubtedly 
confirms my earlier assertion that one always obtains similar 
polar motion curves despite the completely uncorrelated ex- 
citation functions (except for the common annual excitation 
term whose sole function in the present case is to cause the 
beating in the amplitude). 

Summary 

In summary, the work by Barnes et al. [1983] and Hide 
[1984], contrary to what they claim, do not lead to the CON- 
CLUSION (that the atmospheric excitation can account for 
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the Earth's polar motion during the studied periods) because 
the information about the Chandler wobble excitation that 

can be deduced from their study is, at best, insufficient. 
Whether the CONCLUSION is in reality true or not is thus 
still an open question, as the search for other excitation 
mechanisms for the Chandler wobble proceeds. 
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