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Summary. A digital filter equation is derived which is appropriate for pfe- 
dicting polar motion from excitation axis displacements, o r  for inferring the 
excitation axis changes from observed polar motion. The result differs from 
previously published equations in its phase response. Two additional equa- 
tions are presented which are useful if samples of the excitation and polar 
motion functions are required t o  be at  the same time values. 

This discussion is concerned with the problem of  designing equations which may be used in 
the study of  the Earth's polar motion. The objectives are to predict polar motion from time 
samples of variations in the excitation axis (equivalent t o  the principal axis when there is no 
motion relative to  the Earth); or t o  estimate variations in the excitation axis from samples of  
the pole position. Let the motion of the pole be represented by M ( t ) ,  a continuous complex 
function of  time t ,  with real part denoting displacements along the Greenwich Meridian. and 
imaginary part displacements along 90" east longitude. Similarly, X ( t )  is a complex function 
describing the motion of the excitation axis. Finally, F,  is Chandler's frequency of the free 
nutation (about 0.843 cycle yr-'), l/Q, is the dissipation factor (Q,  is tlie quality factor) of 
the free nutation, and IT, = 2 n F C ( 1  + i/2Q,) is a complex frequency which succinctly des- 
cribes the Chandler frequency and damping. 

A differential equation describing the relationship between M ( t )  and X ( t )  is derived from 
Euler's rigid body equations with corrections to account for dissipation and for the 
lengthening of  the free period due to  the non-rigid nature of the Earth. Letting i = dz, the 
equation is: 

The transfer function of this equation, which is the ratio of tlie Fourier transform of 
M ( t )  to  that of X ( t )  at frequency f ,  is 
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Figure 1. Transfer functions ( I b )  and (2b) displayed as amplitude in decibels (20!og,, of the modulus of 
t h e  transfer function) and phase (arc tangent of the ratio of imaginltry to real parts). Calculations were 
done  for the case T = 1 month, F ,  = 0.843 cycle yi', and Qc = 100. 

The phase and amplitude are displaced in Fig. 1 as a function of frequency. 

t-iaubrich (1976) expressed in complex notation as 
A discrete version of equation ( la )  was presented by Jeffreys (1940), which Wilson & 

where the subscript t denotes discrete samples of the continuous functions at time intervals 
T. The transfer function of equation (2a) is 

- io,T 
1 -- exp [i(o, - 27rf)q 

for which amplitude and phase are also shown in Fig. 1 .  Modern discussions of digital filter 
design would describe the transition from ( lb)  to  (2b) as an example of the matched Z trans- 
formation (Tretter 1976, p. 212), which involves mapping the complex fplane pole in (1 b) 
at f =  ac/2n into a pole in the complex Z plane [Z = exp(-2nij7')] at the location exp(io,T). 
This filter design method works quite well for the case of resonant behaviour (large Q,) such 
as the Earth exhibits near the Chandler frequency. 

It is evident from Fig. 1 that the amplitude of (2b) is a close match to (lb), but that the 
phase functions are not in good agreement, except near f =  F,. The phase discrepancy is 
apparently zero at F, and linear in frequency, suggesting that a simple linear phase shift 
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should correct the problem. Multiplication of (2b) by the quantity exp  [in(F,-f)T] pro- 
duces a discrete equation, and associated transfer function: 

i exp ( -inFcT) 
x, = M(,+ 772) - exp (i%T)M(,- T/2)1 

OCT 

- io, T exp [in(Fc - f )  TI 

1 - exp [i(oc - 2nf)TI 

The amplitude of (3b) is the same as that of (2b) but  the phase is now virtually indistinguish- 
able from that of (1 b) as shown in Fig. 1 .  

At the Chandler frequency the phase of ( Ib)  and (3b) are precisely the same and the 
average phase difference at all other frequencies is very small (3 x rad). At the Chandler 
frequency the amplitude of (3b) is slightly larger than that of (1 b) by a factor 

I + 2nFC TIQ, - exp (F, T / G >  

which approaches 1 as Q becomes infinite. However, even with Q, as low as 10, this factor 
involves an error of 0.002 dB and is thus completely negligible. At other frequencies, the 
amplitude of  (3b) appreciably differs from ( l b )  as shown in Fig. 2.  

Equation (3a) permits recovery of  the excitation axis displacements a t  times mid-way 
between sampies of M ( t ) .  However, if one is interested in recovering samples of X ( t )  at the 
sampling times of M(t) .  then estimates of  M ( t  + T / 2 )  and M ( t -  T / 2 )  may be obtained by 
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Figure 2. Transfer function ratio (4b)/(lb) and (Sb)/(lb). The amplitude of the ratio is displayed in deci- 
bels. The phase of the ratio is the phase difference, which averages about 3 X except near the Nyquist 
frequencies, * O.S/T. The phase difference of (3b)/(lb) remains small even at the Nyquist frequencies. 
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linear interpolation o f M ,  Mc,- n, h f ~ , + T ~  to yield 

-?iu,Texp [in(Fc - 2f)T] 

1 + [ 1 ~ e x p  (iu,T)] exp(-:nifr) - exp [i(o,  - 4nf’)TI 

with the transfer function given by (4b) .  The amplitude and phase diffzrences between (4b) 
a n d  ( I  b )  are  plotted in Fig. 2. Equation (4a) would not be suitable for predicting M ,  from X ,  
since it has undesirable amplification at  the Nyquist frequcncies. However, It would be use- 
ful for estimating X ,  from M,, since the transfer function would then be the reciprocal of  
(4b) and thus would attenuate Nyquist frequency variations, a desirable feature if the M ,  
values are corrupted by noise. 

For the task of predicting M ,  and X,, one may employ a similar method to obtain: 

~ iu ,Texp( inFcT)  [ I  + exp (-2nifT)l 
___ ~~~ ~ 

2(1 ~ exp [ i (o , -7nf)T])  

with the transfer function given by (5b). The amplitude and phase difference between (5b) 
a n d  ( l b )  are plotted in Fig. 2.  

There are large amplitude differences between (4b) or (5b) and the exact amplitude (1 b) 
as  shown in Fig. 2. These arise because the averaging used to obtain these equations has 
introduced a pole in the complex plane for (4b). and a zero for (5b).  The location of  this 
pole or zero is exactly on the unit circle (at Z = -1). It would be possible to  move the pole 
o r  zero just outside the unit circle, on  the real axis. The result would be more moderate 
amplitude behaviour. but less perfect agreement with the phase of ( lb),  near the Nyquist 
frequencies. 
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