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a b s t r a c t

We develop the theoretical foundations, numerical algorithms and computer programs

to retrieve the 3D geometry of a density interface from gridded gravity data. The

solution depends on constraining assumptions on permissible density values. An

integral equation is solved by a new method of local corrections to find the density

interface. The method is efficient and does not require trial-and-error forward modeling.

We also discuss a method, based on upward and downward continuation, to isolate

gravity effects from selected depth ranges. Both new methods are applied to create a

model of the Moho surface for the Hellenic subduction zone. The resulting model is

discussed relative to available seismic data and previous gravity analysis.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The usual approach to find 3D topography of a contact
surface is forward gravity modeling. One changes an
initial model in an interactive way to diminish gravity
residuals. Recently this approach has been applied, for
instance, to study a geological structure of the Hellenic
subduction zone in Casten and Snopek (2006) by means of
the package IGMAS for interactive gravity modeling, in
Makris and Yegorova (2005) and in Snopek and Casten
(2006). The package IGMAS (Götze and Lahmeyer, 1988)
uses polyhedral bodies for 3D forward modeling, Makris
and Yegorova (2005) and Snopek and Casten (2006) apply
other programs (GRAVMAG and 3GRAINS, respectively),
both based on rectangular prisms. The disadvantages of
the forward modeling approach are particularly obvious, if
we regard the package IGMAS. One changes the model of
the geological section from one profile to another, but
ll rights reserved.

+311527 82348.
changes in one vertical section influence the gravity field
along other profiles. Each section takes into account a lot
of geological and seismic a priori information, but the
number of parameters, per section, is much larger than
the number of profile observations, it is not reasonable
from the viewpoint of stability. The problems of
non-uniqueness and instability of gravity data inversion
are not likely to be solved by a forward modeling
approach.

A different approach is applied by Tirel et al. (2004) to
obtain the Moho topography to the north of Crete; the
linearized inverse problem is solved by means of the
Fourier transform (Parker, 1972; Oldenburg, 1974). In our
investigation we use a different procedure, we solve an
integral equation for a function determining the geometry
of an unknown contact surface. The kernel of this
equation, evaluating the gravitational effect of a contact
surface, depends in a nonlinear way on the sought
function. We solve the full nonlinear 3D inverse problem
by means of the method of local corrections (Prutkin,
1983, 1986) without any linearization. This method does
not make use of nonlinear minimization, which reduces
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the computer calculation time by an order of magnitude.
The local corrections method takes the non-uniqueness
and instability of the inverse problem into account.

Our method of inversion is of the same type, as the
method of Cordell and Henderson (1968). A solution is
calculated from gravity data automatically by successive
approximations, without a time-consuming trial-and-
error process. Like in the algorithm of Cordell and
Henderson (1968), density contrast and the position of a
horizontal reference plane should be specified to obtain
a unique solution. We apply a different approach to form a
successive approximation. Moreover, we take intoaccount
the instability of the inverse problem by means of a sort of
regularization. We have mentioned above different ap-
proaches for gravity data inversion applied for the
particular area of the Hellenic subduction zone. A detailed
overview of the literature on the potential field inverse
problem can be found in Blakely (1995).

The paper is organized as follows: we present new
mathematical algorithms for isolating sources in depth
and for 3D gravity data inversion, then both algorithms
are applied to the Hellenic subduction zone to extract the
effect of the Moho interface and find its 3D topography.
We start with our mathematical theory, it is presented in
the first two sections. The new algorithm is suggested as a
preliminary pre-processing of gravity observations to
extract the gravitational effect of the desired contact
surface. The main idea of the algorithm is to eliminate
sources from the Earth’s surface to a prescribed depth by
means of upward and downward continuation. In Section
2, the description of the algorithm is presented. The
method of local corrections applied to contact surface
topography recovery is developed in Section 3. Next, we
start with the application of our algorithms for the
Hellenic subduction zone. To avoid short wavelength
intra-crustal effects, Tirel et al. (2004) band-pass filtered
gravity data at 50–300 km. We apply a different approach,
a model of the near-surface layer is found and its
gravitational effect is subtracted from the gravity data.
The short wavelength field features are related to
undulations of the light sediment layer. Taking into
account the results of previous modeling of sedimentary
basin thickness (Makris and Yegorova, 2005; Casten and
Snopek, 2006), the layer to the depth of 20 km is chosen.
The model of the layer (see Section 4) demonstrates the
advantages of the local corrections approach; several
contact surfaces with different density contrasts have
been found simultaneously. In Section 5 we extract the
gravitational effect of the Moho boundary and detect its
3D topography. Section 6 contains the main conclusions of
our study.
2. Algorithm to eliminate sources above a
prescribed depth

The main purpose of the algorithm is to find the part of
the observed gravity field, which is harmonic above a
given depth h. We can treat this function as a gravitational
effect of the half-space below the depth h. To find such a
function means to eliminate all sources located in the
horizontal layer from the Earth’s surface to a prescribed
depth. The algorithm allows separation of the effects of
shallow and deeper objects and extracts the gravity signal
of sources located in horizontal layer between given
depths h1 and h2.

The algorithm is based on upward and downward
continuation. There are two problems to be solved. Firstly,
we continue the data from the Earth’s surface upward to
the height h to diminish the influence of the sources in the
near-surface layer. This operation causes errors mainly in
the vicinity of the boundary of the area. To reduce the
errors we need a model of the regional field to subtract
from the observed field prior to upward continuation.
Secondly, we continue the obtained function downward to
the depth h, i.e. the distance 2h in downward direction.
The problem of downward continuation is a linear ill-
posed inverse problem, therefore we must use some
regularization.

The function, which we treat as a regional field, is
assumed to be harmonic in the area (in a 2D sense) and to
have the same values at the boundary of the area, as the
observed field:

D2f ¼
q2f

qx2
þ
q2f

qy2
¼ 0 within area S;

f ¼ Dg on its boundary qS:

8><
>: (1)

If we subtract the values of this function, the residual field
will be equal to zero at the boundary of the area, therefore
no errors are introduced when we integrate the residual
field while performing upward continuation along the
restricted area. According to the properties of harmonic
functions, this function has no extremes within the area,
so we create no false anomalies. Besides, as it is known
from calculus of variations (Gelfand and Fomin, 2000), a
solution of problem (1) provides a minimum of the
following functional:

Jðf Þ ¼

ZZ
S

qf

qx

� �2

þ
qf

qy

� �2
 !

dx dy�!min, (2)

therefore, we obtain the smoothest possible function with
given values on the boundary. All these properties allow
us to regard this function as a model of the regional field.

To illustrate all steps of the algorithm, we have
developed a model of the gravity field, caused by both
shallow and deeper sources, as well as some objects
beyond the area of investigation. The initial field and a
solution of problem (1) are shown in Fig. 1.

After subtracting the suggested model of the regional
field we make an upward continuation of the residual field
by means of the following formula:

1

2p

ZZ
h

ððx� x0Þ2 þ ðy� y0Þ2 þ h2
Þ
3=2

Uðx; y;0Þdx dy

¼ Uðx0; y0;hÞ. (3)

Formula (3) gives a solution of the Dirichlet problem: to
find a harmonic function in the upper half-space with
given values on the boundary (on the plane z ¼ 0).

At the second step we continue the obtained function
downward to the depth h, i.e. the distance 2h in the
downward direction. To do this, we apply a formula
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Fig. 1. Model of local gravity anomaly and corresponding regional field. Model of regional field (right) represents solution of problem (1), it is harmonic

inside area and takes same values on boundary as given field (left).
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Fig. 2. Calculated and exact field without near-surface sources. Left panel: results of application to total field algorithm of upward and downward

continuation, described in Section 2. Right panel: field of all sources but shallow ones calculated using exact formulas.
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similar to (3):

1

2p

Z
h1

ððx� x0Þ2 þ ðy� y0Þ2 þ h2
1Þ

3=2
Uðx; y;�hÞdx dy

¼ Uðx0; y0;hÞ, (4)

where h1 ¼ 2h. Formula (4) provides a function, which is
harmonic in a half-space above the plane z ¼ �h. This
time we treat the formula as an integral equation: the
right hand side is given, and we have to find the unknown
function Uðx; y;�hÞ.

Although the influence of shallow sources is dimin-
ished after the upward continuation, the rest of them are
still present in the field, so we continue downward
through the sources. It should be emphasized, that the
problem of downward continuation is a linear ill-posed
inverse problem, therefore we must use some regulariza-
tion. Since the integral operator A in (4) is self-adjoint and
positive, we apply Lavrent’ev et al.’s (1986) approach.
If we write (4) in the following form: Au ¼ uh, u is
an unknown field on the level z ¼ �h, uh is the obtained
field on the height h, then Lavrent’ev’s regularization
gives: ðAþ aIÞu ¼ uh, where I is the identity operator and
a—a regularizing parameter. Therefore, after discretiza-
tion no matrix multiplication is required.
Finally, we calculate the field on the Earth’s surface
z ¼ 0 using a formula similar to (3). We obtain a part of
the field, which is harmonic up to the depth h, so we can
treat it as an effect from the deeper sources.

The described algorithm has been applied to the model
field shown in Fig. 1; an attempt is made to eliminate
shallow sources and to detect the effect of the deeper
objects. This time the field without near-surface sources
can be found exactly. The results are presented in Fig. 2.
The comparison reveals that the solution obtained by
means of the suggested algorithm is slightly smoothed,
but the main features have been reconstructed. It should
be noted that no information beyond the area has been
taken into account.
3. Method of local corrections

To evaluate the gravitational effect of a contact surface,
we consider a model of a two-layer gravitational medium
in 3D space. The model consists of two layers of a constant
density s1 and s2, separated by the surface S. Suppose
that, in the Cartesian coordinate system, the plane xOy

coincides with the Earth’s surface, and the z-axis is
directed downward. The upper layer is bounded above
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by the horizontal plane z ¼ h�; h�X0, and below by the
surface S; the lower layer is bounded above by the surface
S and below by the plane z ¼ hþ; at zoh� and z4hþ
masses are absent. The unknown contact surface is
determined by the equation z ¼ zðx; yÞ. It is assumed that
zðx; yÞ is a single-valued limited function, and that for a
certain H

lim
jxj!1
jyj!1

jzðx; yÞ � Hj ¼ 0, (5)

i.e., the surface S has a horizontal asymptotic plane z ¼ H.
If we subtract the effects of two Bouguer plates, we find
that the field of our two-layer model accurate to a
constant term is the field of masses contained between
the surface S and the plane z ¼ H, with a density �Ds,
where Ds ¼ s2 � s1 is the density contrast at the contact
surface. The field of such an object is evaluated by the
formula

Dgðx0; y0;0Þ

¼ GDs
Z 1
�1

Z 1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ z2ðx; yÞ

q
0
B@

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2 þ ðy� y0Þ2 þ H2
q

1
CAdx dy, (6)

where G is the gravitational constant. We can regard
formula (6) as a nonlinear integral equation of the first
kind with respect to the unknown function zðx; yÞ. Suppose
that the field at the Earth’s surface is given on a
rectangular grid fxi; yjg. We divide a volume between the
surface S and the plane z ¼ H into a number of elementary
prisms, for each prism the projection of its center onto the
plane xOy coincides with some observation point. The
mean heights of the prisms are taken as unknown
parameters. Their number equals exactly to the number
of observations N. We denote by Kðx0; y0; x; y; zðx; yÞÞ the
integrand in (6). This expression was referred to by
Snopek and Casten (2006) as the gravity attraction of a
linear, vertical mass. They apply it as an approximation of
the exact formula for the prism gravity. It means, that
while discretizing (6) by numerical integration we use
one-point cubature formula for each elementary prism,
which gives

cGDs
X

i

X
j

Ki0 j0
ðzijÞ ¼ Ui0j0

, (7)

where c is the weight of the cubature formula,
zij ¼ zðxi; yjÞ, and

Ui0 j0
¼ Dgðxi0 ; yj0

;0Þ; Ki0j0
ðzijÞ ¼ Kðxi0 ; yj0

; xi; yj; zijÞ.

To increase the accuracy one could apply Gauss cubature
discretization in (6), in this case each term in (7) will be
substituted by several similar ones, corresponding to the
same zij.

Our goal is to develop an iterative procedure for solving
the system of nonlinear equations (7). Suppose that zn

ij are
the values of the unknown function obtained at the n-th
step. For the corresponding solution of the direct problem
we introduce the notation

Un
i0 j0
¼ cGDs

X
i

X
j

Ki0 j0 ðz
n
ijÞ. (8)

The method of local corrections is based on the fact that
the variation of the field at a certain point is affected
mostly by the variation of the part of the object boundary
closest to this point. At each step we try to reduce the
difference between the given and the approximate values
of the field at a given node solely by modifying the value
of the unknown function at that node. If only the value of
the unknown function at one point has been changed,
then the sum in (8) for the next iteration differs only in
one term. Assuming that in the chosen node Unþ1

ij ¼ Uij

and subtracting (8) from the similar equality correspond-
ing to the ðnþ 1Þth step, we obtain the fundamental
equation to find the next approximation (Prutkin, 1986):

GDsðKijðz
nþ1
ij Þ � Kijðz

n
ijÞÞ ¼ aðUij � Un

ijÞ. (9)

The coefficient a in the right-hand side of (9) is introduced
to slow down the change of the model.

It turns out that, in the case of a contact surface, Eq. (9)
can be converted to a very simple form. Indeed, consider-
ing Eq. (6), we have

Kijðz
n
ijÞ ¼ 1=zn

ij � 1=H. (10)

Using (10), we rewrite Eq. (9) as

GDsð1=znþ1
ij � 1=zn

ijÞÞ ¼ aðUij � Un
ijÞ

and finally

znþ1
ij ¼

zn
ij

1þ aszn
ijðUij � Un

ijÞ
, (11)

where s ¼ ðGDsÞ�1. According to (11), several arithmetic
operations are sufficient to obtain the next successive
approximation at each point of the grid. We have to store
only the vector of unknowns of the same length N as the
length of the observations vector. The full (nonlinear)
inverse problem is solved without any linearization, and
we do not need to store a matrix of the size N � N.

For the fixed values of the density contrast Ds and the
depth to the asymptotic plane H, a solution of the inverse
problem for a contact surface is unique. At the same time,
different values of these parameters cause different
solutions but the same gravity field. In Prutkin (1986), a
family of contact surfaces is presented, which generate the
same field, as a point source from different values of Ds
and H.

Eq. (6) is an integral equation of the first kind, this
problem is ill-posed and requires regularization. Dimin-
ishing the coefficient a in (11), we can prevent highly
oscillating solutions, therefore this factor is similar to a
regularizing parameter.

Due to the fact that our approach to inversion is local,
we could take a different value of the density contrast at
each grid point. One should include a function of two
variables Dsðx; yÞ into the integrand of Eq. (6), then use
factors Dsij ¼ Dsðxi; yjÞ in the left-hand side of (7) and
substitute the coefficient s in (11) by sij ¼ ðGDsijÞ

�1. The
same is valid for the depth to the asymptotic plane H.
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Sometimes it is reasonable to divide the whole area into
sub-areas and to use different values of H and Ds for each
one. Within the method of local corrections this approach
is also possible, which is demonstrated in the next section.

4. Model of the layer above the depth of 20 km

We tested both algorithms described in Sections 2 and 3,
on gravity data from the Hellenic subduction zone.
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from satellite altimetry, were combined to produce a
uniform data set. The data were corrected for mass effects
of topography/bathymetry using the standard reduction
density of 2:67 g=cm3 for all continental masses and of
1:64 g=cm3 for the water cover in marine areas. More
details on how the Bouguer map was compiled can be
found in Casten and Snopek (2006). The resulting Bouguer
map, gridded with 1 arc min spacing, is shown in Fig. 3b.

Four regions dominate the field from north to south:
(1) the gravity high (up to 170 mGal) in the Cretan Basin,
(2) an arc-shaped gravity low (relative, from 0 to
þ50 mGal), which connects Crete with the Peloponnesos
to the west and with Anatolia to the east, (3) a variation of
anomalies (from �10 to þ100 mGal) outside the island,
and (4) gravity highs in the south-west and in the south-
east towards the African continent. Two gravity lows—one
south of Crete and the other in the south-east—give rise to
speculations on their origin, because they are of local
character. Here, the sediments of the Mediterranean Ridge
have thicknesses up to 18 km (Casten and Snopek, 2006).

The main goal of our investigation is to extract the
gravity signal from the Moho boundary and to find its 3D
topography. From active seismic experiments (Bohnhoff
et al., 2001) it is known that the continental Moho depth
below central Crete is reaching 30 km. To the north the
Moho depth rapidly decreases to below 20 km and to
the south decreases gradually to 17 km. About 100 km off
the southern coast of Crete the continental Moho is in
contact with the African oceanic plate.

The area to the south of Crete is challenging to
interpreter: the Moho boundary in this region goes
upward, according to seismic information, at the same
time the gravity field is complex and includes a maximum
between two local minima. We start from the model of
the near-surface layer for this area.

Since we used the observations re-gridded with a
spacing of 2.5 km, shallow sources (above the depth of
2.5 km) have been eliminated by means of upward and
downward continuation as described in Section 2. The
upward and downward continuation can be regarded as a
preliminary smoothing of the data. Then a density
distribution in the horizontal layer between depths 2.5
and 20 km has been found. An algorithm of gravity data
inversion for a square density distribution can be derived
from the main equation (9). In this case the inverse
problem becomes linear, the same is true of the formula to
obtain the next approximation. It is known that one can
find a density distribution in a near-surface layer (or even
in a simple layer), which is responsible for the total
observed gravity. To prevent this, we have developed the
following approach: a density variation is limited accord-
ing to a priori information, it is allowed to vary from 2:3 to
2:85 g=cm3 (see Makris and Yegorova, 2005; Casten and
Snopek, 2006). In this way, the part of the total field
caused by shallow sources can be extracted.

At the next step we transform the horizontal layer with
density distribution into a piecewise homogeneous med-
ium with two contact surfaces. It is observed that the
mean density value is equal to 2:6 g=cm3. If we subtract
the mean density value, the area will be divided into sub-
areas with negative and positive density variations
relative to the mean value. We introduce two generalized
types of geological section: in the sub-areas, where the
density is less than its average value, we suppose the
presence of the material with density 2:3 g=cm3 from
the depth of 2.5 km up to a contact surface and with
density 2:6 g=cm3 below the contact surface to the depth
of 20 km; in the sub-areas with positive density variation
the material is assumed to have density 2:6 g=cm3 from
2.5 km up to a contact surface and 2:85 g=cm3 from the
contact surface to the depth of 20 km. All average density
values are identical to those published by Makris and
Yegorova (2005).

The initial position of the unknown contact surfaces
were obtained in such a way that the mass of each
elementary prism coincides with the mass of the homo-
geneous prism with density from the estimated density
distribution. Then the solution has been further improved
by means of the method of local corrections presented in
Section 3. The process could be described in the following
way: we start from the homogeneous layer with average
density of 2:6 g=cm3, then in ‘‘negative’’ sub-areas the
boundary of light material moves downward from the
depth of 2.5 km, in ‘‘positive’’ sub-areas the boundary
of more dense material moves upward from the depth of
20 km. It should be noted that in the framework of our
approach it is possible to take different values of the
density contrast Ds and the depth to the asymptotic plane
H for different sub-areas.

The obtained model of the area is shown in Fig. 4. We
should repeat that our goal at this step is to remove
gravity anomalies caused by near-surface density varia-
tions to the south of Crete. Only this smaller area is
shown, which represents a part of the entire area of
investigation. To calculate the depth to the contact
surface, one has to subtract negative values from 2.5 km
and positive values from 20 km. The model includes two
depressions of the light sediment layer and an uplift of the
crystalline basement between them. This model is quite
similar to the results of Makris and Yegorova (2005)
(see Fig. 10, where a WE-oriented section for the same
area is presented). As distinct from Makris and Yegorova
(2005), our results have been obtained automatically
without any forward modeling.
5. Gravitational effect and 3D topography of the
Moho boundary

The gravitational effect of the near-surface layer model
obtained in the previous section has been subtracted from
the observed field. It is known that this procedure
generates high-frequency disturbances in the residual
field. We could treat these disturbances as artificial
shallow sources. Therefore, it seems to be quite suitable
to apply the algorithm of upward and downward
continuation from Section 2 to eliminate the sources.
The residual field after this processing is shown in Fig. 5.
Now the gravity field has a minimum at Crete and then
increases to the south, just in agreement with the
behavior of the Moho boundary according to seismic data.
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Fig. 5. Field without shallow sources. Gravitational effect of near-surface

layer model is subtracted from initial data, short wavelength features are

eliminated by means of algorithm from Section 2.

Fig. 6. Field of deeper sources. Sources up to depth of 100 km are

removed using algorithm of upward and downward continuation,

described in Section 2.

Fig. 4. Model of near-surface layer. ‘‘Negative’’ sub-areas represent depressions of light sediment layer with density 2:3 g=cm3 from depth of 2.5 km, to

obtain real depth one has to subtract negative value from 2.5 km. In ‘‘positive’’ sub-area there is uplift of crystalline basement with density 2:85 g=cm3

from depth of 20 km, to obtain real depth one has to subtract positive value from 20 km.
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We try to find the depth of the continental Moho (the
contact surface between lower continental crust and
European lithospheric mantle). The only problem we have
now is that the residual field in Fig. 5 looks extremely
asymmetric in WE direction. It does not correspond to
seismic information (Makris and Yegorova, 2005) and
results of the previous modeling (Makris and Yegorova,
2005; Snopek and Casten, 2006) for the Moho boundary.
These considerations have led us to the conclusion that we
have not extracted yet the gravitational signal of the Moho
boundary in the proper way. It is supposed that the
residual field in Fig. 5 still represents a sum of two effects:
from the Moho boundary itself and from deeper sources.

To separate the effects we apply again the algorithm
described in Section 2. This time the part of the residual
field has been found, which is harmonic above the depth
of 100 km. The gravitational signal from the half-space
below 100 km is presented in Fig. 6. It consists of the
positive anomaly with the shape close to the Agean
Microplate and the negative anomaly in the area of the
Mediterranean Ridge. The possible source of this field
could be an uplift of light astenosphere material in the
area of subduction. After subtracting the effect of deeper
sources (Fig. 6) from the residual field (Fig. 5) we obtain
ultimately the field, which is regarded as the gravitational
signal from the Moho boundary. This field is shown in
Fig. 7.

Using the obtained field as given data, we solve the
inverse problem for a 3D topography of the Moho
boundary. The method of local corrections is applied,
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Fig. 7. Effect of Moho boundary. To obtain field, gravity effects from

near-surface layer up to depth of 20 km and from half-space below

100 km are subtracted from initial data.

Fig. 8. Topography of Moho boundary. Geometry of contact surface is

obtained by means of method of local corrections, described in Section 3.

Undulations from depth of 20 km are shown, to obtain real depth one has

to subtract both positive and negative values from 20 km.
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which is described in Section 3. The density distribution
forthe upper layer has been discussed beforehand. The
lower layer is assumed to be homogeneous with density of
3:3 g=cm3 (Snopek and Casten, 2006). Since the upper
layer is non-homogeneous, a density contrast has different
values at different grid points, which is quite admissible in
the framework of the method of local corrections (see
Section 3). We take the value H ¼ 20 km as a depth to the
asymptotic plane. The obtained 3D topography of the
Moho boundary is shown in Fig. 8. The difference between
the depth to the asymptotic plane H ¼ 20 km and the
depth to the Moho boundary is displayed (the value
þ5 km means the depth 15 km, the value �5, 25 km,
respectively). The depth to the obtained Moho boundary
has a minimum to the north of Crete, a maximum below
Crete, then the depth decreases gradually to the south.
The main features of the obtained topography are quite in
agreement with seismic information and results of
previous gravity modeling. Moreover, as distinct from
Makris and Yegorova (2005) and Snopek and Casten
(2006), the gravitational maximum at the center of Crete
is reproduced.

It should be noted that several assumptions are made
to obtain such a solution. While calculating the model of
the near-surface layer, we have certain limiting restric-
tions on density variation according to a priori informa-
tion. We assume also that all singularities related to the
Moho boundary are located above the depth of 100 km,
which allows us to eliminate deeper sources. These
assumptions make it possible to isolate the contribution
of the Moho surface from the total field. Prior to solving
the inverse problem by means of the method of local
corrections, the density contrast and the depth to the
asymptotic plane are specified according to seismic data.
6. Summary and conclusions

Two new algorithms have been suggested to extract
the signal from a contact surface and to find its
3D geometry. Both algorithms are applied to gravity data
for the Hellenic subduction zone to recover the Moho
boundary topography. The following conclusions are
drawn:
(1)
 A new algorithm has been suggested to eliminate the
sources from the Earth’s surface to a prescribed depth
h, based on upward and downward continuation. This
algorithm can separate the effects of shallow and
deeper objects. The solution of the 2D Dirichlet
problem can be used as a model of the regional field.
Subtracting the regional field from the observations
prior to upward continuation allows integration of
gravity data in the restricted area, while ignoring any
information beyond the area of investigation. Down-
ward continuation provides the part of the field,
which is harmonic above the depth h. The properties
of the integral operator give an opportunity to
implement Lavrent’ev’s regularization and to get rid
of matrix multiplication.
(2)
 The method of local corrections is developed to recover
3D topography of a contact surface. The method offers a
simple and effective procedure for solving the nonlinear
inverse problem without any linearization. This method
does not make use of nonlinear minimization, which
reduces the computer calculation time by an order of
magnitude. We solve an integral equation for the
function determining a topography. Density contrast
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and the depth to the asymptotic plane must be
specified to obtain an unique solution. We take into
account instability of the inverse problem by means of a
sort of regularization.
(3)
 Both algorithms were applied to the Hellenic subduc-
tion zone. The algorithm of upward and downward
continuation has eliminated near-surface and deeper
sources. A density distribution for the layer to the
depth of 20 km has been found, which is transformed
into two contact surfaces with different density
contrasts found simultaneously by means of the
method of local corrections. This method is applied
also after isolating the gravitational effect of the Moho
boundary to recover its 3D topography. Several
preliminary assumptions are made: restricted ampli-
tude of density variation in the near-surface layer,
depth to singularities related to the Moho boundary,
density contrast and the depth to the asymptotic
plane for the Moho surface. But all these assumptions
are made prior to solving the inverse problem. The
inversion itself is made automatically without inter-
active forward modeling which dramatically diminishes
the time expenditure.
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