Using The Downhole Strong Ground Motion Array To Study The Nonlinearity Of Soft Soil Layers

0

Speaker:Yi-Wei Cheng

Reference

- Investigation Of Non-linear Site Amplification At Two Downhole Strong Ground Motion Arrays In Taiwan (K.L.Wen, 1995)
- Nonlinearity, Liquefaction, and Velocity Variation of Soft Soil Layers in Port Island, Kobe, during the Hyogo-ken Nanbu Earthquake (Aguirre, 1997)

Outline

- Introduction
- Data and Results
- Discussion
- Conclusions

Introduction

Nonlinearity

- The nonlinear relation in the case of large strains may play an important role in ground motions at soil sites near the source during large earthquakes.
- It has been known that non-linear effects in near-surface deposits can be manifested in increased damping and reduced shear wave velocity.
- Since V = 4Hf, the decrease in shear wave velocity should be associated with the downward shift in the resonance frequency of the layer.
- A main obstacle to identifying non-linear site effect is that observed spectra are contaminated by source and path spectral contributions.

Introduction

Method

 $R(t) = S_0(t) * P(t) * S_i(t)$ FT $R(f) = S_0(f) \times P(f) \times S_i(f)$ $\frac{R_s(f)}{R_r(f)} = \frac{S_{os}(f) \times P_s(f) \times S_{is}(f)}{S_{or}(f) \times P_r(f) \times S_{ir}(f)}$ $\frac{R_s(f)}{R_r(f)} \approx \frac{S_{is}^{\vee}(f)}{S_{ir}(f)}$

• LSST array

Event		Dete	Depth	м	\triangle	PGA ₀ /PGA ₁₁ /PGA ₄₇
	Event	Date	(km)	ML	(km)	(Gal)
Weak motion						
ſ	3	1985/11/07	74	5.5	17	27.3/12.0/9.3
	5	1986/03/29	10	4.7	8	41.4/17.8/15.4
	6	1986/04/08	11	5.4	31	35.4/15.2/13.0
	8	1986/05/20	22	6.2	69	35.0/21.5/14.2
	14	1986/07/30	2	4.9	5	57.5/31.2
	20	1986/12/10	98	5.8	42	23.8/11.4
	21	1987/01/06	28	6.2	77	31.8/16.8
	22	1987/02/04	70	5.8	16	43.4/20.4
	23	1987/06/24	31	5.7	52	31.7/11.5
	24	1987/06/27	1	5.3	40	23.7/13.1
	27	1988/09/18	63	5.6	68	22.3/11.1
Si	trong m	otion				
	7	1986/05/20	16	6.5	66	223.6/113.7/96.9
	12	1986/07/30	2	6.2	5	186.7/192.8
	16	1986/11/14	7	7.0	78	167.2/94.6
F	oreshoc	eks to event 12				
	9	1986/07/11	1	4.5	5	72.8/34.1/28.4
	10	1986/07/16	1	4.5	6	70.0/26.3/19.2

• LSST array

	Front	Data	Depth	м	\triangle	PGA ₀ /PGA ₁₁ /PGA ₄₇
	Event	Date	(km)	ML	(km)	(Gal)
Weak motion						
	3	1985/11/07	74	5.5	17	27.3/12.0/9.3
	5	1986/03/29	10	4.7	8	41.4/17.8/15.4
	6	1986/04/08	11	5.4	31	35.4/15.2/13.0
	8	1986/05/20	22	6.2	69	35.0/21.5/14.2
	14	1986/07/30	2	4.9	5	57.5/31.2
	20	1986/12/10	98	5.8	42	23.8/11.4
	21	1987/01/06	28	6.2	77	31.8/16.8
	22	1987/02/04	70	5.8	16	43.4/20.4
	23	1987/06/24	31	5.7	52	31.7/11.5
	24	1987/06/27	1	5.3	40	23.7/13.1
	27	1988/09/18	63	5.6	68	22.3/11.1
S	trong m	otion				
	7	1986/05/20	16	6.5	66	223.6/113.7/96.9
	12	1986/07/30	2	6.2	5	186.7/192.8
	16	1986/11/14	7	7.0	78	167.2/94.6
Foreshocks to event 12						
	9	1986/07/11	1	4.5	5	72.8/34.1/28.4
	10	1986/07/16	1	4.5	6	70.0/26.3/19.2

Event

• SMART2 array

Weak motion									
176	1992/05/21	15.4/1.7	11.6/3.4	4.5	16.7	38.4			
185	1992/06/30	17.5/4.9	16.5/4.2	4.5	28.6	33.9			
189	1992/07/23	11.2/2.5	15.3/3.0	4.5	12.8	31.1			
198	1992/10/09	16.5/2.3	5.1/2.9	4.1	15.9	24.1			
222	1993/05/04	10.3/2.0	17.5/2.6	4.0	1.0	5.8			
231	1993/06/24	11.5/1.9	12.0/2.6	5.2	65.0	87.4			
234	1993/06/25	17.5/4.1	15.0/3.2	3.9	4.6	12.2			
235	1993/06/26	17.0/4.1	12.8/3.1	3.6	6.7	11.6			
Strong motio	on								
183	1992/06/25	160.2/34.8	93.7/28.3	4.5	22.7	24.2			
192	1992/08/14	135.9/50.6	108.6/31.7	4.5	15.7	26.3			
202	1992/12/28	117.6/24.8	154.4/23.4	4.9	16.2	32.4			
Aftershock, d	coda								
184	1992/06/25	38.3/7.5	24.6/7.7	3.3	13.4	23.3			
183coda		*	*						
192coda		*	*						
202coda		*	*						

• SMART2 array

Fvent	Date	PGA ₀ /PGA	A ₂₀₀ (Gal)	ML	Depth	Hypocentral distance (km)		
Liter	Dure	EW	NS		(km)			
Weak motion								
176	1992/05/21	15.4/1.7	11.6/3.4	4.5	16.7	38.4		
185	1992/06/30	17.5/4.9	16.5/4.2	4.5	28.6	33.9		
189	1992/07/23	11.2/2.5	15.3/3.0	4.5	12.8	31.1		
198	1992/10/09	16.5/2.3	5.1/2.9	4.1	15.9	24.1		
222	1993/05/04	10.3/2.0	17.5/2.6	4.0	1.0	5.8		
231	1993/06/24	11.5/1.9	12.0/2.6	5.2	65.0	87.4		
234	1993/06/25	17.5/4.1	15.0/3.2	3.9	4.6	12.2		
235	1993/06/26	17.0/4.1	12.8/3.1	3.6	6.7	11.6		
Strong motio	on							
183	1992/06/25	160.2/34.8	93.7/28.3	4.5	22.7	24.2		
192	1992/08/14	135.9/50.6	108.6/31.7	4.5	15.7	26.3		
202	1992/12/28	117.6/24.8	154.4/23.4	4.9	16.2	32.4		
Aftershock,	coda							
184	1992/06/25	38.3/7.5	24.6/7.7	3.3	13.4	23.3		
183coda		*	*					
192coda		*	*					
202coda		*	*					

Ratio

Spectral

Data and Results

• SMART2 array

	T (PGA ₀ /PGA ₂		A ₂₀₀ (Gal)		Depth	Hypocentral
	Event	Date	Date EW	NS	ML	(km)	(km)
Aftershock and Mainshock	Weak motio	n					
10°	176	1992/05/21	15.4/1.7	11.6/3.4	4.5	16.7	38.4
	185	1992/06/30	17.5/4.9	16.5/4.2	4.5	28.6	33.9
	189	1992/07/23	11.2/2.5	15.3/3.0	4.5	12.8	31.1
	198	1992/10/09	16.5/2.3	5.1/2.9	4.1	15.9	24.1
100	222	1993/05/04	10.3/2.0	17.5/2.6	4.0	1.0	5.8
10-1	231	1993/06/24	11.5/1.9	12.0/2.6	5.2	65.0	87.4
	234	1993/06/25	17.5/4.1	15.0/3.2	3.9	4.6	12.2
	235	1993/06/26	17.0/4.1	12.8/3.1	3.6	6.7	11.6
1 10	Strong moti	on					
Frequency (Hz)	183	1992/06/25	160.2/34.8	93.7/28.3	4.5	22.7	24.2
	192	1992/08/14	135.9/50.6	108.6/31.7	4.5	15.7	26.3
	202	1992/12/28	117.6/24.8	154.4/23.4	4.9	16.2	32.4
	Aftershock,	coda					
	184	1992/06/25	38.3/7.5	24.6/7.7	3.3	13.4	23.3
	183coda		*	*			
	192coda		*	*			
	202coda		*	*			

• Japan array

• Japan array

Table 2Seismic Events Used in This Study

134	4° 30'	135° 00'	135° 30'	136° 00'	Date	Time	Depth	
		28/V/			(year.month.day)	(hr:min:sec)	(km)	Magnitude
			· · · · · · · · · · · · · · · · · · ·		94.06.28	13:08:53.02	16.0	4.6
				15	94.07.28	10:01:52.04	11.5	4.1
	24/1/94 (11:5		/X/94 (11:51)		94.10.24	11:51:10.72	15.1	4.3
35' 00'	10/XI/94 (00:38)	00:38)	20:26)	94.11.09	20:26:56.41	10.4	4.1	
		2/11/95 (12:57)			94.11.10	00:38:17.72	11.1	3.9
					95.01.17	05:46:46.74	16.0	6.9
		2/11/95 (16:19)	s (00:30) 3/11/95 (20:37)		95.01.17	08:58:16.14	18.8	4.7
	mon	0///05/00-95	10///05/01		95.01.18	05:25:40.39	9.56	3.0
	17//05	(00:E0)			95.01.26	01:01:18.38	11.01	3.3
	(00.00) (00.00)			95.02.02	12:57:22.13	5.94	2.4	
į	04/V/95 (17:42) 14/X/95 (02:04	26/1/95 (0-	:01)	95.02.02	16:04:19.55	12.80	3.4	
		5 (09:04)		95.02.02	16:19:27.71	17.24	3.4	
34° 30'		5 (02.04)	34° 30'	95.02.03	20:36:55.32	5.22	3.0	
	}	2/11/95 (16:04)	:04)		95.02.18	21:37:33.66	20.42	3.8
		28/V1/94 (10:	01)	95.05.04	17:42:02.18	16.2	4.3	
		•		95.05.19	20:35:38.97	20.8	4.1	
	18/11/95 (21:37	18/1/95 (21:37)			95.09.12	06:30:26.41	15.7	3.9
134	° 30'	135° 00'	135° 30'	136" 00'	95.10.14	02:03:59.15	16.8	4.8

• Japan array

Table 1 Original Soil Model in Port Island Vertical Array

Depth (m)	Soil Type	Location of Accelerometers	V_p [km/sec]	V _s [km/sec]
0–2.0		*PR4-0 m	0.260	0.170
2.0-5.0	Gravel ^R		0.330	
5.0-12.6			0.780	0.210
12.6-19.0	Sandy gravel ^R	*PR3-16 m	1.480	
19.0-27.0	Clay		1.180	0.180
27.0-33.0	Sand	*PR2-32 m	1.330	0.245
33.0-50.0	Sandy gravel		1.530	0.305
	and sand			
50.061.0	Sand		1.610	0.350
61.079.0	Clay			0.303
79.0-(85.0)	Sandy gravel	*PR1-83 m	2.000	0.320

R = Reclaimed land.

Results

• Japan array

atio

atto

 No statistically significant non-linear response is detected on the SMART2 array, that is tentatively accounted for by the stiffer soil conditions and weaker accelerations achieved at the SMART2 site.

LSST 193gal >SMART2 150gal

• The change of the S-wave velocities in the surficial layers affects the peak frequencies of the ratios.

• The liquefaction causes a permanent variation of the elastic properties of the liquefied layers.

• Change in velocity only can be explained with a simultaneously increase of density and reduction of G.

$$V = \sqrt{\frac{G}{\rho}}$$

Conclusions

- The peak frequencies in the spectral ratios of the strong motion are shifted to lower frequencies comparison to the spectral ratios of the weak motion.
- The non-linear amplification can be detectable at certain soil conditions above a threshold acceleration level.
- The clear differences between the velocity structures obtained before and after the mainshock.
- Deamplification is one of the characteristic symptoms of non-linear ground response of strong motion compared with the weak motion.