Seismicity and tectonics. (Left) Simplified tectonic boundaries and seismicity (from U.S. Geological Survey PDE Catalog 1980–2004, M > 3) in the southern Iberia region. Arrows indicate relative motions of major plates and tectonic blocks. Bathymetric contours are shown at 1000-m intervals (from General Bathymetric Chart of the Oceans 1-min digital Atlas). The dashed line shows the inferred limit between continental and oceanic lithosphere. (Right) Three-dimensional block diagram indicating sinking and roll-back of oceanic lithosphere belonging to the African Plate.

Tidal Triggering Caught in the Act
Ross S. Stein

The lunar tides beat our entire planet, rhythmically stressing and relaxing every geological fault twice daily. These tiny stress changes may trigger small shocks on faults critically stressed for failure in future large earthquakes. Tantalized by this possibility, scientists have long searched for earthquakes triggered by tides, but the results have been, at best, equivocal. Tidal triggering does occur beneath some active volcanoes and mid-ocean ridges, yet not demonstrably in Japan’s volcanic regions than in its volcanic sites. Tidal triggering is more common in Japan’s active tectonic regions than in its volcanic sites. Tidal triggering is more common in Japan’s active tectonic regions than in its volcanic sites.

References and Notes
14. This article is IUEM contribution 925.

Published by AAAS
27 AUGUST 2004 VOL 305 SCIENCE www.sciencemag.org
The conclusion of Tanaka et al. rests on a two-part analysis, the first step of which appears decidedly tenuous. In one hundred 1° by 1° regions covering the Japanese archipelago, they compute the azimuth of the tidal compressional stress for 90,000 earthquakes, normalized by the tidal compressional stress for the same earthquakes but with randomized occurrence times. Tidal triggering is identified when the number of earthquakes departs from a uniform distribution. Tanaka et al. find tidal triggering in 13 regions. But just 13 of 100 regions exhibit tidal triggering, on average at the 90% confidence level used in their analysis, 10 out of 100 regions should exhibit tidal triggering just by chance. An excess of three does not constitute causality.

Undaunted, the authors next compare the azimuth of tidally triggered shocks to the azimuth of tectonic compression for the 10 of the 13 regions where this is possible. Suddenly, a long-sought signal emerges from the noise: a correlation between the peaks in the tidal and tectonic compression directions (see the figure).

Tanaka et al. also shed light on the Coulomb stress analysis of earthquakes. In doing so, they reveal why a widely used technique for studying earthquake triggering (11)—resolving stress changes on planes optimally oriented with respect to the net regional and earthquake stress—has worked so well. It is because earthquakes are triggered by amplifying the tectonic stress under which faults operate. A large stress change that would force a fault to slip in a direction other than the one in which it has evolved has little effect, whereas a tiny nudge in its natural slip direction can nucleate an earthquake. The results reported by Tanaka et al. also upend arguments that the high rate of tidal oscillations all but precludes triggering (12). Given that most shocks in Japan are thrust or strike-slip, they also challenge arguments that triggering cannot be detected in strike-slip regimes.

The Achilles’ heel of the analysis by Tanaka et al. is why the tidal effect is evident in only 13% of the Japanese archipelago. The authors suggest that regions must reach a critical stress before the small tidal increments can trigger earthquakes. They support their claim by arguing that large shocks have preferentially struck regions exhibiting tidal triggering (3). But there are other plausible explanations.

First, the 13 regions could be subject to unusually strong tides. Tanaka et al. should therefore test whether the seismicity rate is proportional to the tidal phase when the tidal and tectonic stresses align. Second, faults might need to be uniformly oriented for tidal triggering to be detectable. Tidal triggering is identified in only one region with a complex stress and faulting pattern. Third, the 13 regions could have unusually low fault friction. To test this hypothesis, the authors should invert for the azimuth of the tectonic stress rather than plot the P axes. The latter represent the principal compression only if fault friction is low, because antithetical faults are then orthogonal to each other and share the same P axes. For high fault friction, antithetical faults form at acute angles to the principal compression direction, and their P axes would diverge.

Whether the study by Tanaka et al. proves to be a breakthrough depends on what happens next. Reproducing the results in California and Taiwan would strengthen if not cement the case. Examining cases with unusually large tidal stress changes due to ocean loading will test whether the oscillatory nature of tidal stress—rather than its small magnitude—inhibits triggering (13). Finally, Tanaka et al. should set up a formal forecast to see if large earthquakes strike the 13 regions at a higher rate than strike the rest of Japan. If so, then the dream of tidal monitoring of earthquake hazard could yet come true.

References

Supporting Online Material
www.sciencemag.org/cgi/content/full/305/5689/1248/DC1
Fig. S1
Reference