Earth tides can trigger shallow and intermediate depth earthquakes

Speaker : Shao Yilien

References

Cochran, E. S., Vidale, J.E. Sachiko T. (2004) Earth tides can trigger shallow thrust fault earthquakes. Science, vol 306, 1164-1166

N. Cadicheanu, M. van Ruymbeke, and P. Zhu (2007) Tidal triggering evidence of intermediate depth earthquakes in the Vrancea zone (Romania). Nat. Hazards Earth Syst. Sci., 7, 733-74

- Introduction

- Method(I) the tidal potential phase angles of earthquakes
- \equiv . Method(2)- a tidal-stress time series that includes the solid Earth tide and an ocean-landing component.

<u>M</u>. Conclusion

Introduction

- It can triggering an earthquake by tidal when the stress in the focal area is near the critical level (Tananka et al., 2006)
- Earth tide are deeply modulated signals which depend on the Sun and Moon's orbital parameters.
- The response of a seismic zone to tidal periodicities depends on its specific geology, tectonic history and stress accumulation mechanisms in this region.
- The tidal modulation tendencies in seismic activity could help explain some aspects on the physical mechanism of rupture forming.

-. Introduction

- Method(I) the tidal potential phase angles of earthquakes
- \equiv . Method(2)- a tidal-stress time series that includes the solid Earth tide and an ocean-landing component.

The tidal potential phase angles

- Cadicheanu et. al studied mainly the semidiurnal tidal components because the gravitational tidal forcing is a force, which could affect the dynamic processing at such depths.
- They computed the M2 and S2 tidal phase angle of each earthquake and attribute gravity vales at moment of earthquake occurrence which was calculated from a local model by Tsoft (Van Camp and Vauterin, 2005).

Earth tide component	Doodson argument	Angular frequency (°/h)	Periodicity (h)	Amplitude (microgal)	
 <i>S</i> 2	273.555	30.000000	12.000000	42.286	
M 2	255.555	28.984104	12.421000	90.812	

Methods(1)

- Compute the tidal potential phase angles of earthquakes
- A stacking analysis method named HiCum (Histogram Cumulating) is applied to compute the tidal potential phase angles of earthquakes.

Methods(1)-statistical tests

Schuster's tests

$$D^{2} = \left(\sum_{i=1}^{N} \cos \alpha_{i}\right)^{2} + \left(\sum_{i=1}^{N} \sin \alpha_{i}\right)^{2}$$
$$p_{S} = \exp\left(-\frac{D^{2}}{N}\right)$$

Permutation tests

$$p_p = \left(\sum_{l=0}^{m} A_l\right) / r$$

A_l : HiCum on each permutation distribution of amplitude A_l > A_0 (l=1,2,3,...m where m ≤r)

D: vectorial sum

Data(1)

- Vrancea zone (Romania)
- RomPlus catalogue from the National Institute of
 - Earth Physics of Bucharest
 - ▶ 45°-46°N, 25.5°-27.5°E
 - ▶ Mw ≧2.5
 - 60 km \leq Focal depth \leq 300 km

	Wave	With aftershocks		Without aftershocks		
Result(1)	M2	$p_s = 79.46\%$	$p_p = 79.48\%$	$p_s = 66.77\%$	$p_p = 70.88\%$	
	S2	$p_s = 0.86\%$	$p_p = 3.54\%$	$p_s = 15.78\%$	$p_p = 10.22\%$	

The distribution of gravity values and earthquake numbers as a function of tidal phase angle.

- In these case, the event distributions should be considered as random.
- It means that the processes induced by tidal triggering have a non repetitive long term pattern.

 In order to evaluate the possible correlations between earthquake occurrence and the semidiurnal tidal wave in a shorter time interval, a sliding window algorithm was developed.

Vrancea - HiCum S2 in moving time windows of 365.25 days shifted by 30 days, Mw≥2.5, without aftershocks: 1981-2005

Vrancea - HiCum M2 in moving time windows of 365.25 days shifted by 30 days, Mw≥2.5, without aftershocks: 1981-2005

Each distribution was evaluated by Shuster's and Permutation tests

Temporal variation of the p_s-value (blue) and p_p-value (red) in every sliding window for HiCum with an M2 (left) and S2 (right) period. The vertical bar represents the standard deviation of the p_s and p_p-values.

p_s and p_p -values are plotted in real time

 Similar phenomena were also repoted in the study of the Tokai region earthquakes (Tanaka et al., 2006)

-. Introduction

- Method(I) the tidal potential phase angles of earthquakes
- \equiv . Method(2)- a tidal-stress time series that includes the solid Earth tide and an ocean-loading component.

- Earthquake-tide correlations have been observed to be small or nonexistent in normal crust; however, correlations have been shown in shallow, possibly hydrothermal or magma-related areas. (Tolstoy 2002 and O. Saar 2003).
- Cochran et. al take advantage of accurate accounting of ocean tides and a large data set of earthquake focal mechanisms with fairly well known fault phase to look for a correlation.

Data(2)

Harvard Centroid Moment Tensor (CMT) catalogue

- ▶ 0 km \leq Focal depth \leq 40 km
 - These earthquakes are in regions with the largest tidal stresses
 - Shallow events are under lower confining pressures, so tidal stress may be proportionally more influential
 - a larger influence of the ocean loading component
- Reverse-type earthquakes
 - In subduction zones, ocean loading tends to be largest and low-angle thrust events are most common.

Method(2)

- Calculated a tidal-stress time series that includes the solid Earth tide and an ocean-landing component.
- Shear failure under compressive stress can be described by the Coulomb criterion
 - $\bullet \ \tau_c = \tau + \mu \sigma_n$
 - τ : shear stress; σ_n : normal stress; μ : the coefficient of friction

Statistical tests

- Binomial test
- Schuster's test

Tidal phase angle

- Calculated the tidal phase angle (Θ) between -180° and 180°
- defined the average of the tidal stress amplitudes at the peaks just before and after each earthquake to be the peak tidal stress τ_p
- 0° phase is defined to be at the time of maximum stress that can promote failure.

Correlation with the tides is found for shallow-dipping thrust events

- (A) Plot of peak tidal stress τ_p
 versus total number of event N_{tot}
- (B) plot of the number of excess
 N_{enc} during times of higher stress
 versus N_{tot}
 - N_{enc} the number of events with -90 ° <⊙ <90 °</p>
- (C)percentage of N_{ex} versus N_{tot}
 - $N_{ex} = [N_{enc} (N_{tot}/2)]/N_{tot}$
- (D)binomial probability versus for =0.2, 0.4, and 0.6.

Result

- The most highly correlated 45 events are the most highly stressed, and most are shallow, with 41 events at or above 15 km depth.
- The next 100 events are not as highly correlated and tend to be deeper, with only 45% the earthquakes at or above 15 km depth.
- Tidal stress amplitudes decay with depth, so event depth and tidal stress amplitude are not independent

Result

- On the basis of the earthquake-tide correlation observed, we have tried to estimate the tidal stress amplitude required to trigger an earthquake.
- The percent of Excess events, N_{ex}
 - N_{enc} the number of events with -90 $^{\circ}$ < Θ <90 $^{\circ}$

•
$$N_{ex} = [N_{enc} - (N_{tot}/2)]/N_{tot}$$

Both global thrust events and California strike-slip events are shown for various peak Coulomb stress ranges (τ_p) given a coefficient of friction $\mu = 0.4$

-. Introduction

- Method(I) the tidal potential phase angles of earthquakes
- \equiv . Method(2)- a tidal-stress time series that includes the solid Earth tide and an ocean-landing component.

四. conclusion

Conclusion

- A systematic temporal pattern related to the decrease of the p-value precedes the occurrence for larger earthquakes in the Vrancea seismic region. This pattern could be considered as a kind of precursor.
- The possible physical consequences of the tidal effect could constrain the research on the seismic source characteristics and their dynamical patterns.
- We could imagine that for seismic zones, tidal modulation of fluid pressure is acting before the rupture process.
- The observed trend of increased triggering with higher imposed tidal stress can be well fit to friction theories of rate- and state-dependent friction and stress corrosion.

Thanks for your attention