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[1] While conventional interferometric synthetic aperture radar (InSAR) is a very
effective technique for measuring crustal deformation, almost any interferogram includes
large areas where the signals decorrelate and no measurement is possible. Persistent
scatterer (PS) InSAR overcomes the decorrelation problem by identifying resolution
elements whose echo is dominated by a single scatterer in a series of interferograms.
Existing PS methods have been very successful in analysis of urban areas, where stable
angular structures produce efficient reflectors that dominate background scattering.
However, man-made structures are absent from most of the Earth’s surface. Furthermore,
existing methods identify PS pixels based on the similarity of their phase history to an
assumed model for how deformation varies with time, whereas characterizing the temporal
pattern of deformation is commonly one of the aims of any deformation study. We
describe here a method for PS analysis, StaMPS, that uses spatial correlation of
interferogram phase to find pixels with low-phase variance in all terrains, with or without
buildings. Prior knowledge of temporal variations in the deformation rate is not required
for their identification. We apply StaMPS to Volcán Alcedo, where conventional
InSAR fails because of dense vegetation on the upper volcano flanks that causes most
pixels to decorrelate with time. We detect two sources of deformation. The first we
model as a contracting pipe-like body, which we interpret to be a crystallizing magma
chamber. The second is downward and lateral motion on the inner slopes of the caldera,
which we interpret as landsliding.
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1. Introduction

[2] Volcán Alcedo is one of six volcanoes located on Isla
Isabela in the Galápagos Archipelago (Figure 1). Alcedo is
unusual in that it is the only active Galápagos volcano
known to have erupted rhyolite as well as basalt [Geist et
al., 1994]. The last known eruption occurred in late 1993
from the south caldera wall [Green, 1994]. Deformation of
the caldera was detected by Amelung et al. [2000], who
carried out interferometric analysis of synthetic aperture
radar (SAR) data acquired over Alcedo between 1992 and
1999. However, they found the correlation to be too low to
determine the deformation signal on the volcano flanks and
were therefore unable to draw any conclusions about the
source of the deformation. No measurements of surface
displacement have beenmade on Alcedo by any other means,
and displacements inferred from SAR data are therefore all

we can currently use to constrain the movement of subsurface
magma and volatiles. Conventional interferometric SAR
(InSAR) fails on the upper flanks of Alcedo because a
significant amount of vegetation is present and this leads to
temporal decorrelation for most pixels in the image.
[3] When a SAR image is formed, even at the highest

possible resolution, the value for each pixel remains the
coherent sum of the returns from many scatterers on the
ground. If these scatterers move with respect to each other
between satellite passes, as is expected to be the case when
many scatterers are vegetation, the phase of the return will
vary in a random manner which leads to decorrelation. If,
however, a pixel is dominated by one stable scatterer that is
brighter than the background scatterers, the variance in the
phase of the echo due to relative movement of the back-
ground scatterers will be reduced, and may be small enough
to enable extraction of the underlying deformation signal
(Figure 2). Hooper et al. [2004] identified this type of pixel
as a persistent scatterer (PS) pixel. Physically, these stable
scatterers might be a tree trunk or a single large rock or facet
amongst the vegetation.
[4] Methods to identify and isolate these PS pixels in

interferograms have been developed by several groups [e.g.,
Ferretti et al., 2001; Crosetto et al., 2003; Lyons and
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Sandwell, 2003; Werner et al., 2003; Kampes, 2005]. All of
these methods use a functional model of how deformation
varies with time to identify PS pixels, and have been very
successful in identifying PS pixels in urban areas undergo-
ing primarily steady state or periodic deformation. In these
algorithms an initial set of PS pixels with a high signal-to-
noise ratio (SNR) is identified by analyzing the amplitude
variation, pixel by pixel, in a series of interferograms.
Approaches include analysis of each pixel alone [e.g.,
Ferretti et al., 2001] and comparison with surrounding
pixels [e.g., Adam et al., 2005]. Once an initial set of
amplitude-stable pixels has been identified, each candidate
pixel is tested for phase stability by examining its phase
differences with nearby candidates. Only a pixel whose
phase history is similar to the assumed model of deforma-
tion is deemed stable and not merely the result of random
chance. In this manner a network of reference PS pixels is
identified that is then used to find additional PS pixels by
further phase analysis of all (or a subset of) the remaining
pixels.
[5] This approach can fail for two reasons, both related to

the fact that the data are ‘‘wrapped’’ or modulo 2p. For
reliable ‘‘unwrapping’’ or estimation of integer ambiguities,
unmodeled phase must be small; Colesanti et al. [2003b]
estimate that it must be less than 0.6 rad.

[6] First, it can fail if the distance between neighboring PS
pixels is too large, such that the contribution to the unmod-
eled phase from the difference in delay along the raypaths
through the atmosphere exceeds the limit for reliable
unwrapping. For common atmospheric conditions, the PS
pixel density should exceed 3 to 4 per km2 [Colesanti et al.,
2003b]. The initial selection using amplitude variation finds
most bright PS pixels, such as those from man-made
structures, and therefore works well in urban areas where
the density of structures is high. However, in most natural
terrains, including the majority of volcanoes, bright scatter-
ers are rare and the density of reference PS pixels is generally
too low to form a closely spaced reference network. This is
the case for Long Valley volcanic caldera [Hooper et al.,
2004] and the central San Andreas Fault zone [Johanson and
Bürgmann, 2001].
[7] The second limitation is that an approximate model

for the temporal variation in deformation is needed to isolate
the deformation signal from atmospheric, topographic and
other phase errors. As the time dependence of deformation
is not usually known a priori, it is usually assumed to be
approximately constant in rate, or periodic in nature. If PS
pixels can be identified, deviations from the initial para-
metric model may be estimated from the phase residuals
[Ferretti et al., 2000; Colesanti et al., 2003b; Kampes,
2005]. Pixels can only be identified, however, when the
deviations from the model are sufficiently small that
unwrapping is reliable, as in the San Francisco Bay Area
[Ferretti et al., 2004; Hilley et al., 2004], where deforma-
tion is due primarily to steady strain accumulation on
various fault systems. In cases where deformation varies
too much from steady state, such as many volcanoes and
landslides, as well as certain tectonic settings e.g., those
dominated by postseismic deformation, a reliable network
of reference PS pixels will not result. A method is required
that produces a time series of deformation, with no prior
assumptions about its temporal nature.
[8] Hooper et al. [2004] introduced a PS method to

extract the deformation signal from SAR data acquired over
Long Valley caldera, an area that contains few man-made

Figure 1. Location of Volcán Alcedo on Isla Isabela,
Galápagos. The image is adapted from Amelung et al.
[2000](by permission from Macmillan Publishers Ltd.,
Nature, copyright 2000) and shows line-of-sight ground
displacements between 1992 and either 1997 or 1998,
depending on the volcano.

Figure 2. Phase simulations for (a) a distributed scatterer
pixel and (b) a persistent scatterer pixel. (top) Cartoons
representing the scatterers contributing to the phase of one
pixel in an image and (bottom) simulations of the phase for
100 iterations, with the smaller scatterers moving randomly
between each iteration. The brighter scatterer in Figure 2b is
3 times brighter than the sum of the smaller scatterers.
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structures and that deformed at variable rates during the
time interval analyzed. Hole et al. [2006] also applied a
variation of this method to the Taupo volcanic zone, New
Zealand. In this paper, we report on significant improve-
ments to the method which increase the accuracy of the
estimated displacements and also make it applicable in
areas with widely varying deformation gradients. We first
describe in detail our method, StaMPS (Stanford Method
for PS), for identifying PS pixels and estimating their
displacements. We then apply StaMPS to SAR data acquired
over Volcán Alcedo and model the source of the deformation
seen in the resulting PS interferograms.
[9] There are four parts to StaMPS, each discussed in

detail in sections 2–5:
[10] 1. For interferogram formation (section 2), there are

aspects of interferogram formation for PS processing that
differ to conventional interferogram formation. We summa-
rize all the steps involved and describe the differences in
detail. We also discuss the error terms associated with the
processing.
[11] 2. For phase stability estimation (section 3), we make

an initial selection of candidate pixels based on analysis of
amplitude and then use phase analysis to estimate the phase
stability of these pixels in an iterative process. Finally, there
is an optional step to estimate the phase stability of those
pixels that were initially rejected based on their amplitude
characteristics.

[12] 3. For PS selection (section 4), we estimate for each
pixel the probability it is a PS pixel based on a combination
of amplitude and estimated phase stability. We then use the
estimated probabilities to select PS pixels, rejecting those
that appear to be persistent only in certain interferograms
and those that appear to be dominated by scatterers in
adjacent PS pixels.
[13] 4. For displacement estimation (section 5), once

selected, we isolate the signal due to deformation in the
PS pixels. This involves unwrapping the phase values and
subtracting estimates of various nuisance terms.

2. Interferogram Formation

[14] For PS systems relying on a functional temporal
model to select PS pixels, typically at least 25 interfero-
grams are required to obtain reliable results [Colesanti et al.,
2003a]. Using StaMPS, however, fewer interferograms are
required. We find that 12 interferograms are usually suffi-
cient to identify a network of PS pixels and, in one case at
least, have even been able to identify PS pixels using just
four interferograms. The limiting factor is the accuracy in
estimation of the look angle error (equation (18)), which is
aided by good digital elevation model (DEM) accuracy and
high SNR. The accuracy of the estimated look angle error
and hence the estimated deformation signal improves as the
number of interferograms increases, so it is desirable to use
as many images as possible.
[15] It is possible to carry out PS analysis jointly on data

acquired by sensors with different carrier frequencies, for
example, data acquired by the ERS and ENVISAT satel-
lites [e.g., Adam et al., 2005; Arnaud et al., 2004; Arrigoni
et al., 2004]. However, the number of PS pixels is reduced
as only pixels dominated by the most point-like scatterers
remain correlated at different frequencies. Because PS
pixels in nonurban terrains tend to be less point-like in
their scattering characteristics, we only consider here
interferometry between images acquired by sensors with
the same carrier frequency to maximize the number of PS
pixels identified.
[16] There are several aspects of interferogram formation

for StaMPS that differ from conventional InSAR process-
ing, which we describe below, together with a discussion of
the error terms that arise in interferometric processing.

2.1. Decorrelation and Choice of Master Image

[17] Suppose we form N single-look interferograms from
N + 1 images acquired at different times, all with respect to
one master image. We choose as the master, the image that
minimizes the sum decorrelation, i.e., maximizes the sum
correlation, of all the interferograms. The correlation is a
product of four terms, dependent on time interval (T),
perpendicular baseline (B?, see Figure 3) difference in
Doppler centroid (FDC) and thermal noise [Zebker and
Villasenor, 1992]. A simple model for the total correlation,
rtotal, is

rtotal ¼ rtemporalrspatialrdopplerrthermal

� 1� f
T

Tc

� �� �
1� f

B?

Bc
?

� �� �
1� f

FDC

Fc
DC

� �� �
rthermal; ð1Þ

Figure 3. Imaging geometry for satellite radar interfero-
metry. The sensor is moving into the plane of the paper, its
position at the time of the master acquisition marked by m
and at the time of the slave acquisition by s. B is the baseline
distance between the sensor positions at the two times, with
B? being the perpendicular component of B, r is the range
from the sensor to the Earth’s surface, w is the angle
between the baseline vector and the horizontal, q is the look
angle and qi is the angle of incidence at the Earth’s surface.
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where

f xð Þ ¼ x; for x � 1

1; for x > 1

�
;

r denotes correlation and superscript c denotes the critical
parameter values, i.e., the value beyond which an
interferogram exhibits almost complete decorrelation. The
critical values are dependent on the data set, but typical
values for data acquired by the ERS satellites in arid regions
are T c = 5 years, B?

c = 1100 m and FDC
c = 1380 Hz. We

choose the master that maximizes Si=1
N rtotal, assuming a

constant value for rthermal.
[18] We do not apply any spectral filtering in range or

azimuth, which would increase the correlation, as this
would coarsen the resolution. Generally, the finer the
resolution, the fewer scatterers will be contained within
each resolution cell, and the greater the chance of the cell
being dominated by one scatterer. The trade-off is that
except for truly point-like PS pixels, phase values will
include decorrelation noise related to perpendicular baseline
and Doppler separation.
[19] Our algorithm for PS identification does not actually

require that all interferograms are formed with respect to
one master, only that all are coregistered to one master.
Although we have not implemented this option in our code,
combinations of interferograms using multiple masters may
be chosen to increase the sum correlation.

2.2. Coregistration

[20] Some interferograms have values of temporal sepa-
ration, perpendicular baseline and Doppler separation that
are larger than usual for conventional InSAR. This fact
leads to high decorrelation and a corresponding low co-
herence which make standard coregistration routines, based
on cross correlation of amplitude, fail. To avoid this
problem, we have developed a coregistration algorithm
that uses an amplitude based algorithm to estimate offsets
in position between pairs of images with good correlation.
The function that maps the master image to each other
image is then estimated by weighted least squares inversion
(Appendix A).
[21] Once the mapping functions are estimated, we re-

sample each image to the master coordinate system, using a
12 point raised cosine interpolation kernel. Then we form a
raw interferogram by differencing the phase of each image
to the phase of the master.

2.3. Geometric Phase Correction

[22] Raw interferograms contain a geometric phase term
which is due to the master and slave images being
acquired from different points in space. As in conventional
InSAR, we correct for this geometric phase in two steps.
First, we flatten the interferograms, which involves correct-
ing the phase of each pixel as if the scattering surface were
lying on a reference ellipsoid. Next, we estimate the phase
due to the deviation of the real surface from the reference
ellipsoid by transforming a DEM into the radar coordinate
system. Two error terms arise in this processing, look angle
error and squint angle error. For pixels with many distrib-
uted scatterers, which is the usual situation for conventional
interferometry, the look angle error is due almost entirely to

error in the DEM, and is commonly referred to as DEM
error. For PS pixels, however, there is also a contribution
due to the difference in range between the position of the
dominant scatterer and the center of the ground patch that is
resolved by the pixel; hence we prefer the more general
term. Squint angle error is commonly avoided in conven-
tional InSAR by processing both images to a common
squint angle. However, this coarsens azimuthal resolution,
which, as discussed in section 2.1, we wish to make as fine
as possible to identify PS pixels.
2.3.1. Look Angle Error
[23] The geometric phase due to the change in look angle,

fq, is proportional to the change in range, Dr, between the
master and slave geometry,

fq ¼ � 4p
l
Dr; ð2Þ

where l is the radar wavelength. The minus sign comes
from the definition of the phase measured at the sensor
being phase delay. From the geometry (Figure 3),

r þDrð Þ2 ¼ r2 þ B2 � 2rB cos
p
2
� qþ w

� �
¼ r2 þ B2 � 2rB sin q� wð Þ; ð3Þ

where r is the range in the master geometry, B is the
baseline distance between the slave and master sensor
position, q is the look angle in the master geometry and w is
the angle between the baseline vector and the horizontal.
Differentiating and using equation (2) gives

@fq

@q
¼ 4p

l
B cos q� wð Þr

r þDrð Þ : ð4Þ

[24] Typically Dr 	 r so this simplifies to

@fq

@q
� 4p

l
B cos q� wð Þ: ð5Þ

[25] Neglecting any error in B cos(q � w), which is
included in an orbit error term (equation (10)), we find then
that the error, Dfq, in our estimate of bfq depends only on
Dq, the error in our knowledge of q and for small Dq

Dfq �
4p
l
B cos q� wð ÞDq ¼ 4p

l
B? qð ÞDq; ð6Þ

where B?(q) is the perpendicular component of the baseline.
From the geometry, Dq is obviously dependent on the
accuracy of the estimated height above the reference surface
(Figure 3) but is also dependent on any difference in the
position of the pixel phase center to that assumed in the
flattening step. Specifically,

Dq ¼ Dh sin qið Þ þ x cos qið Þ
r

; ð7Þ

where Dh is the error in height, x is the horizontal distance
of the phase center from the middle of the pixel in range
direction, and qi is the incidence angle. Thus, even if the
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DEM were 100% accurate, there could still be an error in q
due to both the lateral offset of the phase center itself and
any variation in height due to this offset. In the case that we
consider here, where carrier frequency does not vary
between passes, the DEM error is indistinguishable from
the error due to phase center uncertainty. With varying
carrier frequency, separation of the two errors would be
possible [Colesanti et al., 2003b; Kampes, 2005], yielding
more accurate positioning of the scatterer; however, the
above mentioned limitation of using varying carrier
frequencies, that only the most point-like pixels remain
persistent, would apply. In any case, the positional accuracy
of several meters that is already obtained is sufficient for
most deformation studies.
[26] As the look angle error term is estimated later in the

PS processing, the accuracy of the DEM is not usually
important, although higher accuracy reduces the ambiguity
in the estimation step, and thus is important in the case
where only a few (<12) interferograms are available.
2.3.2. Squint Angle Error
[27] There is a similar error term due to the difference in

squint angle between passes. SAR azimuth focusing assumes
that the phase center of the pixel is in the center. The additional
phase introduced if the phase center deviates from the pixel
center in azimuth direction, by an amount h, cancels when the
squint angle is the same for both the master and slave
acquisition. When the squint angles differ, an error term

Df# ¼ 2p
v
FDCh ð8Þ

arises, where v is the sensor velocity (see Kampes [2005] for
a derivation). In the data sets we have analyzed until now,
FDC is generally small and Df# is expected to be less than
0.2 rad. Furthermore, FDC is somewhat correlated with time.
As deformation is also correlated with time, there is the
potential for the phase due to deformation, which is often
much larger, leaking into any estimate for Df#. We
therefore do not attempt to estimate this term and, instead,
treat it as noise.

2.4. Geocoding

[28] Finally, we estimate the position of every pixel in a
geocoded reference frame using the orbital parameters and the
DEM. Theoretically, our estimates of position could be im-
proved using various parameters estimated during processing,
but for the purposes of most deformation modeling, positional
accuracy to within several meters is usually sufficient.

3. Phase Stability Estimation

[29] Initially, we select a subset of pixels based on analysis
of their amplitudes, rejecting those least likely to be PS
pixels. We then estimate the phase stability of each of these
pixels through phase analysis, which we successively refine
in a series of iterations. Finally, we include an optional step to
estimate the phase stability of those pixels that were not
included in the initial amplitude-based selection.

3.1. Amplitude Analysis

[30] Although it is the phase stability of a pixel that
defines a PS pixel, there is a statistical relationship between
amplitude stability and phase stability, that makes consid-

eration of amplitude useful for reducing the initial number
of pixels for phase analysis. Later, we also include ampli-
tude characteristics in estimating the probability of a pixel
being a PS pixel, as discussed in section 4.
[31] The amplitude dispersion index, DA, is defined by

Ferretti et al. [2001] as

DA � sA
mA

; ð9Þ

where sA and mA are the standard deviation and the mean of
a series of amplitude values, respectively. Ferretti et al.
[2001] threshold on DA to select a subset of pixels where
most are PS pixels. We use DA differently, to select a subset
of pixels that includes almost all of the PS pixels in the data
set. The threshold value we use is consequently higher,
typically in the region of 0.4, which leads to most of the
selected pixels not being PS pixels (see Appendix B). There
is an optional later step, described in section 3.3, in which
pixels above this threshold are also analyzed for phase
stability.

3.2. Phase Analysis

[32] Having selected a subset of pixels as initial PS
candidates, we estimate the phase stability for each of them
using phase analysis. The wrapped phase,yx,i, of the xth pixel
in the ith ‘‘flattened’’ and topographically corrected interfer-
ogram can be written as the wrapped sum of 5 terms,

yx;i ¼ WffD;x;i þ fA;x;i þDfS;x;i þDfq;x;i þ fN ;x;ig; ð10Þ

where fD,x,i is the phase change due to movement of the
pixel in the satellite line-of-sight (LOS) direction, Dfq,x,i is
the residual phase due to look angle error, fA,x,i is the phase
due to the difference in atmospheric delay between passes,
DfS,x,i is the residual phase due to satellite orbit
inaccuracies, fN,x,i is a noise term due to variability in
scattering, thermal noise, coregistration errors and uncer-
tainty in the position of the phase center in azimuth, and
W{�} is the wrapping operator. The pixels we seek as PS are
those where jfN,x,ij is small enough that it does not
completely obscure the signal. As the phase is wrapped, this
term must certainly be less than p, but in order to correctly
estimate the integer ambiguity in the number of wraps when
estimating the spatially uncorrelated look angle error, Dqx

u

in equation (18), it must be even smaller in practice.
[33] Variation in the first four terms of equation (10)

dominates the noise term, making it difficult to identify
which scatterers are persistent directly from the wrapped
phase. Hence we estimate these four terms and subtract
them, giving an estimate for bfn,x,i which we assess statis-
tically. We then reestimate the first four terms, using the
statistics of bfn,x,i to weight the contribution of each pixel
to the reestimaton, and subtract the reestimated values
from equation (10) to give a new estimate of bfn,x,i. We
iterate around this loop, refining our estimates of bfn,x,i

each time, until the values converge, which generally occurs
after only a few iterations.
[34] The deformation signal we are interested in is that

due to deformation of the Earth’s surface, which is corre-
lated spatially. There could also be signal associated with
the isolated movement of individual bright scatterers, but
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we are not interested here in these movements and they can
be considered noise. Variation in atmospheric delay between
passes is due mainly to variation in the total electron content
(TEC) of the ionosphere and water vapor content of the
troposphere. Both of these quantities are correlated spatially
[Hanssen, 2001]. Orbital errors are also correlated spatially
in azimuth, and interferometric processing leads to spatial
correlation of the residual orbit error term also in range.
Finally, DEM error tends to be partly spatially correlated
and this maps into the look angle error. Hence estimating
the spatially correlated part of yx,i provides an estimate for
the first three terms plus part of the fourth term in
equation (10). Hooper et al. [2004] achieved this by
calculating the mean of surrounding pixels that were judged
most likely to be PS pixels. The number of pixels included
in the mean was reduced with each iteration as confidence
in ruling out pixels as PS increased. This method is, in
effect, a crude low-pass filter implemented in the spatial
domain and relies on knowing the length scale of the spatial
correlation. While this method worked fine in Long Valley,
where the limiting factor on distance of spatial correlation is
the atmospheric term, in areas with steeper deformation
gradients the deformation term can become the limiting
factor, altering the length scale of correlation. A better
approach is to apply a band-pass-filtering method that
adapts to any phase gradient present in the data.
[35] We implement the band-pass filter as an adaptive

phase filter combined with a low-pass filter, applied in the
frequency domain. Each pixel is first weighted by setting
the amplitude in all interferograms to an estimate of the
SNR for the pixel, which in the first iteration we estimate as
1/bDA. In subsequent iterations we use the amplitude and our
estimate of bfN,x,i to estimate SNR. Figure 4 shows the
relationship between signal, noise, amplitude and phase
noise for a single pixel in a single image. If we assume
that the amplitude of the signal, gx, remains constant and

that real and imaginary components of the noise, nR,x,i and
nI,x,i, respectively, are characterized by a single Gaussian
distribution with zero mean and standard deviation sn,x,
then SNR = gx

2/2sn,x
2 . Our estimate of bgx is then simply

bgx ¼ 1

N

XN
i¼1

Ax;i cosfN ;x;i; ð11Þ

which follows from the fact that gx,i = Ax,i cosfN,x,i � nk,x,i
where nk,x,i is the signal parallel component of noise, the
mean of which is zero. Our estimate for bsn,x2 is given by

bs2
n;x ¼

PN
i¼1 n2I ;x;i þ n2R;x;i

� �
2N

¼

PN
i¼1 A2

x;isin
2fN ;x;i þ Ax;i cosfN ;x;i � gx

� �2� �
2N

: ð12Þ

[36] Substituting for gx with bgx gives
bs2
n;x ¼

1

2

PN
i¼1 A

2
x;i

N
�

PN
i¼1 Ax;i cosfN ;x;i

N

 !2
24 35: ð13Þ

[37] We also experimented with other weight selection
methods, for example, weighting each pixel based on the
probability that it is persistent. Empirically, we find that
setting the amplitude to 1/[P(x 2 PS)]2, where P(x 2 PS) is
the probability that the pixel is a PS pixel (see Appendix C),
can give better results than weighting with the SNR, in the
sense that more PS pixels are found.
[38] To enable use of the two-dimensional fast Fourier

transform (2-D FFT), the complex phase of the weighted PS
pixels is sampled to a grid with spacing over which little
variation in phase is expected (typically 40 to 100 m).
Where multiple pixels fall in the same grid cell, their
complex values are summed. We apply the 2-D FFT to a
grid size of typically 32� 32 or 64� 64 cells, depending on
over what distance we expect pixels to remain spatially
correlated. The adaptive part of the filter determines the
passband based on the dominant frequencies present in the
phase of the pixels themselves. The response is calculated as

H u; vð Þ ¼ jZ u; vð Þj; ð14Þ

where Z(u,v) is the smoothed intensity of the 2-D FFT
[Goldstein and Werner, 1998]. We smooth the intensity by
convolution with a 7 � 7 pixel Gaussian window. We
combine the adaptive phase filter response, H(u,v), with a
narrow low-pass filter response, L(x,y), to form the new
filter response,

G u; vð Þ ¼ L u; vð Þ þ b
H u; vð Þ
�H u; vð Þ � 1

� �a

; ð15Þ

where L(u,v) is a fifth-order Butterworth filter, with a typical
cutoff wavelength of 800 m, a and b are adjustable
weighting parameters, typical values being 1 and 0.3,
respectively, and �H (u,v) is the median value of H(u,v).

Figure 4. Model for pixel amplitude, A. The signal is
assumed to have constant amplitude, g. The real and
imaginary components of the noise, nR and nI, are
characterized by the same Gaussian distribution.
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[39] The resulting filtered phase value, eyx,i, is a wrapped
estimate of the spatially correlated parts of each of the terms
on the right-hand side of equation (10), so subtracting eyx,i

from yx,i and rewrapping gives

W yx;i � eyx;i

n o
¼ W fu

D;x;i þ fu
A;x;i þDfu

S;x;i þDfu
q;x;i þ fu

N ;x;i

n o
; ð16Þ

where fu denotes the spatially uncorrelated part of f. We
expect fD,x,i

u , fA,x,i
u and DfS,x,i

u to be small, as most of their
power lies at longer wavelengths, so replacing their sum
with dx,i in equation (16) gives

Wfyx;i � eyx;ig ¼ WfDfu
q;x;i þ fu

N ;x;i þ dx;ig: ð17Þ

[40] Equation (6) describes an approximate linear rela-
tionship between Dfq,x,i and Dqx. As long as Dfq,x,i

u

contains approximately the same frequency components for
all i, it follows that the same approximate relationship holds
between Dfq,x,i

u and Dqx
u. Substituting for Dfq,x,i

u in
equation (17) gives

W yx;i � eyx;i

n o
� W

4p
l
B?;x;iDqux þ fu

N ;x;i þ dx;i

� �
: ð18Þ

[41] Because B?,x,i is not expected to correlate with fN,x,i
u

or dx,i, we can estimate Dbqxu in a least squares sense. The
contribution from the master image to fN,x,i

u +dx,i will be
present in every interferogram, causing a constant offset,
fx
m,u, that we must also resolve in our least squares

inversion. Since the phase is wrapped, the inversion is not
linear. We implement the inversion as a rough search of

parameter space, followed by a linear inversion to estimate
the best fitting model in the region of the rough estimate.
We typically limit the rough search to values of Dbqu
equivalent to ±10 m of height error and in increments such
that the range of Dbfq,x

u increases by p/4 (Figure 5). The
inversion could also be implemented using the least squares
ambiguity decorrelation (LAMBDA) method, initially
developed for fast GPS double-difference integer ambiguity
estimation [Teunissen, 1995] and adapted for InSAR data by
Kampes [2005]. However, we find that as implemented, the
inversion is not a time-limiting step.
[42] From our estimate for Dbqxu we derive Dbfq,x,i

u which
we subtract from equation (17) to give

Wfyx;i � eyx;i �Dbfu
q;x;ig ¼ Wffu

N ;x;i þ d0x;ig; ð19Þ

where d0x,i = dx,i + Dfq,x,i
u � Dbfq,x,i

u .
[43] We define a measure of the variation of this residual

phase for a pixel as

gx ¼
1

N

XN
i¼1

expf
ffiffiffiffiffiffiffi
�1

p
yx;i � eyx;i �Dbfu

q;x;i

� �
g

�����
�����; ð20Þ

where N is the number of interferograms. Assuming that
fN,x,i � fn,x,i

u and dx,i � 0, gx is a measure of the phase noise
level and an indicator of whether the pixel is a PS pixel. The
measure gx is similar to a measure of coherence [Bamler
and Just, 1993], although in time rather than in space as is
generally implied by the term in reference to SAR
interferograms. The measure differs from coherence in that
amplitude is assumed to be constant at all times, as we wish
to give every image equal weight. A pixel that is bright in
one image and dark with random phase in all other images
would have high coherence if amplitude were included
whereas in reality it would not be a good PS pixel.
[44] The value of gx also depends on the accuracy of eyx,i.

In the case where all the phase values for the surrounding
grid, to which the 2-D FFT is applied, are completely
decorrelated, eyx,i will be random. The measure gx will then
not be a true representation of the variation in residual phase
for a pixel, and the pixel will likely not be selected.

3.3. Pixels With High-Amplitude Dispersion

[45] Some pixels with a high value of bDA, which are
rejected by our initial thresholding (section 3.1), will have
stable phase, although the proportion will be small (see
Appendix B). Once the low-DA pixels have been analyzed,
we include an optional step to analyze the high-DA pixels,
using the filtered phase of the low-DA pixels to calculateeyx,i, and proceeding from equation (16) to calculate gx.

4. PS Selection

[46] Once we have converged on estimates for the phase
stability of each pixel, we select those most likely to be PS
pixels, with a threshold determined by the fraction of false
positives we deem acceptable. We also seek to reject pixels
that persist only in a subset of the interferograms and those
that are dominated by scatterers in adjacent PS pixels.
[47] After every iteration we calculate the root-mean-

square change in gx. When it ceases to decrease, the

Figure 5. An example parameter space search for look
angle error, Dqx

u, for a PS pixel in the Alcedo descending
orbit data set (see section 6). (a) Goodness of fit for trial
values of Dqx

u and (b) a comparison between the data
(circles) and phase values predicted by the value of Dqx

u

with maximum gx (gray line).
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solution has converged and the algorithm stops iterating. We
then select pixels based on the probability they are PS
pixels. Appendix C describes PS probability estimation
based on gx alone. As there is a correlation between
amplitude variance and phase stability (see section 3.1),
we can calculate the probability more accurately still by
considering the amplitude dispersion of the pixels, bDA,x, as
well as gx. We bin the pixels by bDA,x, ensuring there are at
least 104 pixels in every bin, and then bin by gx in incre-
ments of 0.01, resulting in the probability distribution,
p(gx,bDA,x). For each bin in bDA,x, we estimate a, the
proportion of the pixels that are PS pixels, as described in
Appendix C. If only pixels with gx above a given threshold
value, gthresh, are selected, the number of those pixels that
are non-PS pixels is given by (1 � a)

R 1
gthreshpB(gx)dgx, where

pB(gx) is the probability distribution for pixels with random
phase. We find gthresh(bDA,x) for each bin in bDA,x such that
the fraction of pixels selected that are non-PS pixels (false
positive identifications) is acceptable for our particular
application, i.e.,

1� a bDA;x

� �� � R 1
gthresh pB gxð Þ dgxR 1

gthresh p gx; bDA;x

� �
dgx

¼ q; ð21Þ

where q is the specified acceptable fraction of false
positives. As discussed in Appendix B, we generally expect
gx, which is a measure of phase stability, to decrease with
increasing bDA,x. This implies that as bDA,x increases,
p(gx,bDA,x) will skew to lower values of gx. The net effect
on gthresh(bDA,x) is to increase with increasing bDA.
Empirically we find that the relationship is approximately
linear, i.e., gthresh = kbDA where k is a constant. We find the
best fitting k by least squares inversion and select pixels for
which gx > kbDA,x as our PS pixels.

4.1. Partially Persistent Scatterers

[48] The stability of a pixel may change during the time
interval spanned by the data set, for example, if a dominant
scatterer is added or removed. Another issue arises when the
scattering characteristics of a dominant scatterer are altered,
but the scatterer remains dominant. The pixel would then
exhibit two intervals of phase stability, although one of the
intervals would be decorrelated with respect to the master
image. In both cases the pixel may still be identified if its
mean variance is small enough, although in some images
the phase will be dominated by noise. Furthermore, if the
phase characteristics of whole areas of an image change
between two passes, e.g., if a field is plowed or there is a
new lava flow, the signal of all PS pixels selected in that
area will be dominated by noise in some of the images.
[49] It would be possible to keep these pixels only for

those images where they provide useful deformation signal,
and reject them for all other images. However, the three-
dimensional phase unwrapping algorithms developed by
Hooper and Zebker [2007] require pixels that persist
throughout the time spanned by the images. We expect to
relax this requirement in future phase unwrapping algo-
rithms but, for now, we avoid picking these pixels; we
estimate the variance of gx for each pixel using the bootstrap
percentile method [Efron and Tibshirani, 1986] with 1000

iterations, and drop pixels with a standard deviation over a
defined threshold, a typical value being 0.1.

4.2. Multiple Pixel PS

[50] A scatterer that is bright can dominate pixels other
than the pixel corresponding to its physical location. The
error in look angle and squint angle due to the offset of the
pixel from the physical location usually results in these
pixels not being selected as PS pixels. However, for pixels
immediately adjacent to the PS pixel the error may be
sufficiently small that the pixel appears stable. To avoid
picking these pixels, we assume that adjacent pixels selected
as PS pixels are due to the same dominant scatterer. As we
expect the pixel that corresponds to the physical location to
have the highest SNR, for groups of adjacent stable pixels
we select as the PS pixel only the pixel with the highest
value of gx.

5. Displacement Estimation

[51] Once we have selected the most likely PS pixels, we
discard all other pixels and return to the original wrapped
interferogram phase, yx,i (equation (10)). In order to retrieve
the phase due to deformation, fD,x,i, the phase must be
unwrapped and other nuisance terms estimated.

5.1. Phase Unwrapping

[52] If no assumptions are to be made about the underly-
ing phase signal, accurate unwrapping is only possible when
the absolute difference in phase between neighboring PS
pixels is generally less than p. For the spatially correlated
part of the signal, this will be true as long as the spatial
sampling of the signal by the PS pixels is sufficiently dense.
Even when the sampling density is high, the contribution to
the absolute difference in phase between neighboring PS
pixels can still be greater than p due to the spatially
uncorrelated part of the signal. The most significant contri-
bution to this part is the spatially uncorrelated part of the
look angle error, Dfq

u, for which we already have an
estimate. We also have an estimate for the contribution of
the master to the spatially uncorrelated part of the signal,bfxm,u. We therefore subtract our estimates for these two terms
before unwrapping, yielding

W yx;i �Dbfu
q;x;i � bfm;u

x

n o
¼ W fD;x;i þ fA;x;i þDfS;x;i þDfc

q;x;i þDfN ;x;i

n o
; ð22Þ

where Dfq,x,i
c is the spatially correlated part of Dfq,x,i, and

DfN,x,i is the residual spatially uncorrelated noise term,

fN,x,i�bfx
m,u.

[53] One strategy for unwrapping this phase is to unwrap
spatially the phase difference between each neighboring (in
time) pair of interferograms, as done by Hooper et al.
[2004]. However, as we have three dimensions of phase
data, two in space and one in time, more reliable results can
be obtained using one of the three-dimensional unwrapping
algorithms described by Hooper and Zebker [2007]. Which-
ever algorithm is chosen, the results of unwrapping can be
summarized asbfx;i ¼ fD;x;i þ fA;x;i þDfS;x;i þDfc

q;x;i þDfN ;x;i þ 2kx;ip; ð23Þ
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where bfx,i is the unwrapped value of W{yx,i � Dbfq,x,i
u �bfx

m,u} and kx,i is the remaining unknown integer ambiguity.
The value of kx,i includes an integer ambiguity associated
with each interferogram as a whole, which is not estimated.
If the unwrapping is sufficiently accurate, kx,i will be the
same integer for most x in a given interferogram i.

5.2. Spatially Correlated Nuisance Terms

[54] After unwrapping, several terms remain in
equation (23) that mask fD,x,i. The spatially uncorrelated
part of these nuisance terms can be modeled as noise in any
subsequent deformation modeling, but the spatially corre-
lated parts can bias the results, so we seek to estimate and
subtract them. We separate the spatially correlated part of
the nuisance terms into the part that is correlated in time and
the part that is expected not to be. The former consists of the
master contribution to (fA,x,i + DfS,x,i), which is present in
every interferogram, and the latter consists of the slave
contribution to (fA,x,i + DfS,x,i) and Dfq,x,i

c . We estimate
both parts separately using a combination of temporal and
spatial filtering as described below.
[55] In order to estimate the master contribution to the

spatially correlated phase we low-pass filter in time. Be-
cause of the whole interferogram contribution to kx,ip in
equation (23), which is not estimated, absolute values of bfx,i

are essentially decorrelated in time and we are not able to
apply a temporal filter directly. However, kx,i is identical for
most neighboring PS pixels; thus calculating the phase
differences between neighboring PS pixels cancels the
2kx,ip term in most cases, and the resulting phase can be
filtered. We first form a spatial network connecting all
PS pixels using Delaunay triangulation. In each interfero-
gram we difference bfx,i between pairs of PS pixels around
each triangle, in a clockwise direction, giving (from
equation (23))

Dx2
x1
bfx;i ¼Dx2

x1
fD;x;i þDx2

x1
fA;x;i þDx2

x1
DfS;x;i

þDx2
x1
Dfc

q;x;i þDx2
x1
DfN ;x;i; ð24Þ

where Dx1

x2 is the phase differencing operator between PS
pixels x2 and x1. For each PS pair, we low-pass filter the

differenced phase in time by convolution with a Gaussian
function yielding

LTfDx2
x1
bfig � Dx2

x1
fD;i �Dx2

x1
fm
A �Dx2

x1
Dfm

S ; ð25Þ

where LT{�} is the low-pass filter operator, and superscript
m indicates the master contribution to these terms. The
width of the Gaussian is chosen to be less than the time over
which deformation rate is expected to vary, in order to
preserve the deformation phase. Evaluating LT{Dx1

x2bfi} at
the master time, when fD,x = 0 for all x, gives an estimate
for (Dx1

x2bfA
m +Dx1

x2DbfS
m). The estimate, (bfA,x

m + DbfS,x
m ) with

respect to an arbitrary reference PS pixel is retrieved by
least squares inversion.
[56] In order to estimate the slave contributions to the

spatially correlated phase, which are expected to be tempo-
rally uncorrelated, we apply a high-pass filter in time to the
phase difference between neighboring PS pixels, Dx1

x2bfi. We
achieve this by subtracting the low-pass-filtered signal,
LT{Dx1

x2bfi}, giving (from equations (25) and (24))

Dx2
x1
bfi � LT Dx2

x1
bfi

n o
� Dx2

x1
fs
A;i þDx2

x1
Dfs

S;i þDx2
x1
Dfc

q;i þDx2
x1
DfN ;i; ð26Þ

where superscript s indicates the slave contribution to these
terms. For each interferogram the high-pass-filtered signal
for each PS pixel, with respect to an arbitrary reference PS
pixel, is retrieved from equation (26) by least squares
inversion,

Dx2
x1

h i�1

Dx2
x1
bfi � LT Dx2

x1
bfi

n on o
� fs

A;x;i þDfs
S;x;i þDfc

q;x;i þDfN ;x;i; ð27Þ

where [Dx1

x2]�1 is the inverse phase differencing operator
with respect to the reference PS pixel. We then low-pass
filter this phase spatially, for each interferogram, by
convolution with a two-dimensional Gaussian function.
We wish to include all of the signal except for that localized
to individual PS pixels, so we set the width of the Gaussian

Table 1. Descending Orbit Data Processed for Alcedo (Track 140,

Frame 3620)a

Orbit Date Sensor B?, m fDC, Hz

4794 1992-06-15 ERS-1 616 �301.24
13020 1997-10-16 ERS-2 176 �677.10
18531 1998-11-05 ERS-2 533 �574.81
19032 1998-12-10 ERS-2 �917 �633.35
19533 1999-01-14 ERS-2 �484 �574.48
20034 1999-02-18 ERS-2 976 �447.77
20535 1999-03-25 ERS-2 �407 �472.20
25044 2000-02-03 ERS-2 0 �551.03
25545 2000-03-09 ERS-2 �198 �421.53
26046 2000-04-13 ERS-2 �274 �684.07
26547 2000-05-18 ERS-2 �308 �594.90
27048 2000-06-22 ERS-2 �453 �746.82
27549 2000-07-27 ERS-2 �39 �667.34
28551 2000-10-05 ERS-2 �337 �883.46
29052 2000-11-09 ERS-2 �99 �908.65

aB? is the perpendicular baseline relative to the master acquisition on
3 February 2000, and fDC is the absolute Doppler centroid.

Table 2. Ascending Orbit Data Processed for Alcedo (Track 61,

Frame 7176)a

Orbit Date Sensor B?, m fDC, Hz

17951 1998-09-26 ERS-2 �650 29.46
18452 1998-10-31 ERS-2 �707 �92.33
19955 1999-02-13 ERS-2 �854 �71.67
20456 1999-03-20 ERS-2 �707 �25.25
24965 2000-01-29 ERS-2 0 25.39
25466 2000-03-04 ERS-2 298 �184.15
25967 2000-04-08 ERS-2 387 �193.15
26468 2000-05-13 ERS-2 �900 592.97
26969 2000-06-17 ERS-2 �733 500.57
27470 2000-07-22 ERS-2 33 274.85
28472 2000-09-30 ERS-2 122 517.95
28973 2000-11-04 ERS-2 370 143.69
29474 2000-12-09 ERS-2 57 446.37
29975 2001-01-13 ERS-2 �726 �176.83

aB? is the perpendicular baseline relative to the master acquisition on
29 January 2000 and fDC is the absolute Doppler centroid.
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to be narrow, typically 50 m. The output from the spatial
filter provides an estimate of (bfA,x,i

s + DbfS,x,i
s + Dbfq,x,ic ).

Rearranging equation (23) and substituting in the terms
estimated in this section gives

fD;x;i �DfN ;x;i � 2kx;ip

� bfx;i þ bfm
A;x þDbfm

S;x

� �
� bfs

A;x;i þDbfs
S;x;i þDbfc

q;x;i

� �
:

ð28Þ

Figure 6. Wrapped interferograms in radar coordinates formed from descending orbit data acquired
over Alcedo, with 4 looks taken in range and 20 in azimuth. The master acquisition date is 3 February
2000. Each color fringe represents 2.8 cm of displacement in the LOS, and the intensity reflects
interferogram amplitude.

Figure 7. Wrapped interferograms in radar coordinates formed from ascending orbit data acquired over
Alcedo, with 4 looks taken in range and 20 in azimuth. The master acquisition date is 29 January 2000. Each
color fringe represents 2.8 cm of displacement in the LOS, and the intensity reflects interferogram amplitude.
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[57] Typically, we consider the resultant phase relative to
some small region of the image, which cancels the whole
interferogram contribution to the 2kx,ip term, and leaves
phase due only to deformation, spatially uncorrelated noise
and unwrapping errors.
[58] In practice, it is possible that the spatially correlated

nuisance terms may also be correlated temporally, in which
case they will not be correctly estimated by the procedure
described above. For the atmospheric term, this may be the

case in regions where tropospheric moisture content varies
seasonally, as in coastal areas where fog is more prevalent at
certain times of the year. Further processing is required if
this is suspected to be the case. For the orbit error term, we
have found with data from the Radarsat-1 satellite that
values can be large and, apparently by chance, correlated in
time. This is not the case for the Volcán Alcedo data we
analyze in section 6, but when this does occur, phase ramps
can be removed from interferograms where the orbit error
term is visible before estimating the other spatially correlated
terms. Extra care should then be taken in interpreting the
deformation signal, as any overall tilt signal will be removed
by this procedure, and residual nonlinear contributions to the
orbit error term will remain [Kohlhase et al., 2003].
[59] Care should also be taken if the number, or distri-

bution, of interferograms is such that they sample the signal
in time at a rate that is too low to capture the detailed
variation in deformation rate. Some of the deformation
signal may then leak into the estimate for the spatially
correlated nuisance terms, which may be visible as a
recurring spatial pattern in the estimate of these terms for
each interferogram.

6. Application to Volcán Alcedo

[60] We applied StaMPS to data acquired by ERS-1 and
ERS-2 satellites over Volcán Alcedo between June 1992 and

Table 3. Parameters Used in the StaMPS Processing of Alcedo

Data

Parameter Value

DEM SRTM 3 arc sec
Maximum DEM error 10 m
Band-pass phase filter grid cell size 40 m
Band-pass phase filter grid size 64 � 64
Band-pass phase filter low-pass cutoff 800 m
Band-pass phase filter a 1
Band-pass phase filter b 0.3
Acceptable fraction of false positive PS pixels 1%
Partial PS pixels rejected? no
Spatially correlated filtering time window 180 days
Spatially correlated filtering minimum wavelength 50 m
Unwrapping algorithm stepwise 3-D
Unwrapping grid cell size 100 m
Unwrapping Gaussian width 8s

Figure 8. Descending orbit PS interferograms for Alcedo, plotted on SRTM topography displayed in
shaded relief. The data are unwrapped, and spatially correlated error estimates have been subtracted.
Displacements are given relative to PS pixels in the southeast and 16 October 1997.
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January 2001 (see Tables 1 and 2). Starting from the raw SAR
data, the total CPU time we required was approximately four
days, using a PC with a 1.5 GHz CPU and 1 GB of RAM. We
processed 15 descending track images giving 14 interfero-
grams, each with February 2000 as the reference master image
(Figure 6). We also processed 14 ascending track images
giving 13 interferograms, each with January 2000 as the
reference master image (Figure 7). We used a DEM deter-
mined by the Shuttle Radar Topography Mission (SRTM),
with a posting of three seconds of arc. The specific parameters
we used in the processing are detailed in Table 3. The broad
distribution of PS pixels is similar in both the descending and
ascending cases, although the positions of individual PS pixels
are not necessarily identical (Figures 8 and 9). In the ascending
data, the distribution of perpendicular baselines, B?, falls into
two distinct clusters separated by 707 m. Coregistration
between the two clusters is challenging, leading to more
error in fN,x,i from misregistration than in the descending
case. The Doppler centroid separation is also generally
larger in the ascending case, leading to a greater noise
contribution from background scatterers. Note also that
more long-wavelength atmospheric signal is present in the
ascending data than the descending data, presumably related
to the difference in acquisition time which is 10.45 p.m.,
local time, for the ascending orbit as opposed to 10.23 a.m.
for the descending orbit.

[61] An event causing asymmetric deformation occurred
within the caldera between June 1992 and October 1997
which is visible in the interferogram of Amelung et al.
[2000]. Although this event is clear in the wrapped phase of
the PS pixels in an interferogram covering this time interval
(Figure 10), the spatial sampling of the PS pixels is not high
enough everywhere to unwrap the signal associated with
this event. The spatial pattern of the wrapped phase is,
however, consistent with trapdoor faulting, similar to that
observed on Sierra Negra [Amelung et al., 2000; Chadwick
et al., 2006], another volcano located on Isla Isabela. In the
case of Alcedo, the fault appears to be located in the
southwest of the caldera, striking approximately north-
west-southeast. For all subsequent acquisitions, which cover
the time interval between October 1997 and January 2001,
we are able to extract and unwrap the deformation signal
(Figures 8 and 9).

6.1. Modeling

[62] Our results show a dominant deflation signal for the
entire 1997 to 2001 time interval, largely confined within
the caldera. The rate of deflation appears to be approxi-
mately constant over this time interval, and can be observed
by the change in maximum LOS displacement in the
descending data (Figure 11a). There is also a discontinuity
in the displacement rates following the trend of a break in
topography on the west side of the caldera. The rate of

Figure 9. Ascending orbit PS interferograms for Alcedo, plotted on SRTM topography displayed in
shaded relief. The data are unwrapped, and spatially correlated error estimates have been subtracted.
Displacements are given relative to PS pixels in the southeast and 26 September 1998.
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deformation to the west of this discontinuity also appears be
approximately constant as observed by the change in LOS
displacement between the west side and east side of the
caldera in the ascending data (Figure 11b). Both modes of
deformation appear to be constant in rate, and we calculate
the mean LOS velocities for each PS pixel in both the
descending and ascending data. For the descending data we
are able to refer the velocities to the mean signal at the
coasts (Figure 12), which we assume to be unaffected by the
local deformation detected here and moving at the tectonic
plate velocity. For the ascending data, unwrapping between
the caldera and the coast is unreliable due to the higher
phase noise; therefore we analyze only the data within the
caldera and refer the velocities to the east side of the caldera
(Figure 13).
[63] PS pixels on the west side of the caldera that seem

most affected by the second mode of deformation are
located on the inner slope of the caldera (see topography
in Figure 13). Relative to the velocities expected from the
deflationary signal alone, in the ascending data, PS pixels
on the slopes are moving away from the satellite and, in the
descending data, they are moving toward the satellite. This
implies a horizontal component of deformation. Given that
there is a sharp change in velocities moving from the slopes
to the caldera floor, we interpret this mode of deformation
as landsliding.
[64] The similarity between Alcedo and Sierra Negra, in

terms of evidence of trapdoor faulting, might lead us to
assume similar geometries for their shallow magma cham-
bers. Deformation on Sierra Negra between September 1998
and March 1999 can be fit well by an inflating sill-like body

situated entirely within the caldera boundaries and about
2 km below the surface [Amelung et al., 2000; Jónsson,
2002; Yun et al., 2006]. However, for Alcedo, the offset in
the position of maximum LOS velocity on the caldera floor
between ascending and descending geometries (Figures 12
and 13) indicates that there is significant horizontal dis-
placement, more consistent with a three-dimensional source
than a sill-like body. The asymmetry of the deformation
pattern suggests that the source is not radially symmetrical,
so we model it with a contracting, finite ellipsoid [Yang et
al., 1988]. We use only the velocities of PS pixels located on
the caldera floor to avoid bias in our results from the second
mode of deformation. The caldera is essentially flat and we
approximate it with a half-space. We assume a shear

Figure 10. Wrapped PS interferogram for Alcedo caldera
covering the interval 15 June 1992 to 5 November 1998.
The background image is SRTM topography in shaded
relief. Each color fringe represents 2.8 cm of displacement
in the LOS, and the southern end of the fringes is moving
toward the satellite with respect to the northern end.

Figure 11. Maximum LOS displacements on Alcedo for
(a) descending orbit and (b) ascending orbit data.. For each
PS interferogram the mean LOS displacement of the region
of maximum displacement is plotted. For the descending
case the displacements are relative to PS pixels near the
coasts and for the ascending case the displacements are
relative to PS pixels on the east side of the caldera. Error
bars represent one sample standard deviation. To avoid any
bias caused by temporal smoothing, the displacements are
calculated before spatially correlated terms are subtracted,
which causes extra scatter. Also plotted is the best fitting
constant LOS velocity in each case.
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modulus of 30 GPa, with no change in rheology to the depth
of the deformation source, and also assume that the volcano
deforms as a Poisson solid.
[65] Using both descending and ascending LOS velocities,

Markov chain Monte Carlo sampling enables us to find the
posterior probability distribution of the model parameters
[Mosegaard and Tarantola, 1995]. We assume zero velocity
at the coasts in the descending data. For the ascending data
we estimate an additional velocity offset for the east side of
the caldera. We also assume that the probability density of the
velocities approximates a multivariate Gaussian distribution.
Several randomly chosen marginal distributions of the data,
estimated using the percentile bootstrap method of Efron and
Tibshirani [1986], suggest this to be a reasonable assumption
(Figure 14).
[66] We reduce the data to a manageable size for com-

puting purposes by resampling both descending and ascend-
ing data sets to a 90 m grid. We combine velocities for PS
pixels within the same grid cell by taking the weighted
mean, using 1/bsrate,x as the weight for each pixel, wherebsrate,x2 is the estimated variance of the velocity distribution
for pixel x. We estimate this distribution for each PS pixel
using the percentile bootstrap method [Efron and Tibshirani,
1986] to recalculate velocity 1000 times. The position we
assign to each grid cell is the weighted mean position of all
PS pixels within the cell. The variance-covariance matrix for
each of our reduced data sets also follows from the percentile
bootstrap method.

[67] The probability density function that we use as our
prior distribution for each reduced data set is given by

P xð Þ ¼
exp � 1

2
x� mð ÞTS�1 x� mð Þ

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞnjSj

p ; ð29Þ

Figure 12. Mean LOS velocities on Alcedo between
October 1997 and November 2000 from descending orbit
data. The velocities are relative to the mean velocity of PS
pixels on the coasts.

Figure 13. Mean LOS velocities in Alcedo Caldera
between September 1998 and January 2001 from ascending
orbit data. The velocities are relative to the mean velocity of
PS pixels on the east side of the caldera. Also shown is the
SRTM elevation for an east–west transect through the
caldera.

Figure 14. Marginal probability distributions of LOS
velocity, in mm/year, for four randomly chosen PS pixels.
The histograms show the distributions for each individual
PS pixel, and the scatterplots show the distributions for each
pair of PS pixels.
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where x is the data vector, m is the mean vector, n is the
number of data, S is the variance-covariance matrix and
superscript T denotes the transpose. In order to regularize
S, we increase the diagonal variance terms by 10%. This
broadens the marginal probability density function for each
grid cell by 10%, which we expect to broaden the posterior
model distribution by a negligible amount.

6.2. Results

[68] The maximum likelihood model is shown in
Figure 15, together with the LOS velocities predicted by
this model, along with the residual difference between these
and the data. Although only velocities for PS pixels on the
floor of the caldera are used in the inversion, the predicted
velocities are shown for all PS pixels. Residual velocities
for PS pixels located on the inner slopes of the caldera are
assumed to be due to landsliding. The root-mean-square
residual value for the PS pixels used in the inversion is
1.9 mm yr�1.
[69] We plot marginal probability densities from Markov

chain Monte Carlo sampling, for all the model parameters
except position, in Figure 16. The depth of the source is
well constrained, lying between 2.21 and 2.26 km below sea
level at 95% confidence, with the best fit at 2.24 km. This is
based on our assumption of constant shear modulus, how-
ever. If shear modulus actually increases with depth, as is
usually the case, we might expect the depth range to be
somewhat deeper. Although the semimajor axis of the source
ellipsoid is well constrained, between 2.5 and 2.7 km at 95%

confidence, the aspect ratio is less well constrained. The
maximum likelihood model (shown in Figure 15) is very
prolate, with an aspect ratio of 25.5, but an aspect ratio of
5.7 would also fit the data at 95% confidence. The volume
decrease is well constrained, between 1.25 and 1.30� 106m3

at 95% confidence, with a clear trade-off with both the depth
and semiminor axis of the ellipsoid source. The strike of the
ellipsoid lies between 127� and 128� and the dip is subhor-
izontal, dipping upward between 1.3 and 4.7� at 95%
confidence.
[70] In order to determine the motion due to landsliding,

we resolve the residual velocities, after subtraction of the
deflationary source, into eastward and subvertical compo-
nents. The subvertical component includes a small compo-
nent of any northward motion. For the PS pixels lying
within the circles marked on the residual plots in Figure 15,
the eastward component is between 6.5 and 6.7 mm/year
and the subvertical component is between 2.3 and 2.7 mm/
year downward. This corresponds to an eastward plunge of
between 19.4� and 21.9� for the motion.

7. Geophysical Interpretation

[71] Although the data are reasonably well fit by an
ellipsoidal source, in all likelihood, the geometry is more
complex. However, it appears that the source of the deflation
is not equidimensional, and that the longest axis runs
subparallel with the long axis of Isla Isabela in the region
of Alcedo. If we assume that the source represents a

Figure 15. Maximum likelihood model for PS pixels on the caldera floor. The LOS velocities of PS
pixels are shown, together with the velocities predicted by the model and the residual between the two.
The ellipse overlaying the predicted velocities is the surface projection of the maximum likelihood
ellipsoid contracting source. The circle overlaying the ascending data marks the location of the PS pixels
used for landslide analysis in section 6.2.
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preexisting magma chamber, the shape and orientation of the
chamber imply that the axis of least compressive stress runs
approximately southwest-northeast. The bathymetry of the
region (Figure 17) shows a raised platform on all sides of
Alcedo except to the northeast, where the depth drops
rapidly from 500 m to 2500 m within 10 km. Thus we might
expect the least resistance to intrusion to be oriented toward
the northeast.
[72] There was no known eruption during this time

interval, so the most likely causes of the deflation are
contraction due to crystallization and cooling, and the loss
of volatiles from the source area. Crystallization of magma
emplaced at 3 km beneath the Krafla central volcano in
Iceland was estimated to result in a reduction in volume of
�9% [Sigmundsson et al., 1997]. If we assume a similar
value for magma emplaced beneath Alcedo, between 0.6
and 10% of the magma would need to crystallize each year,
to give the model distribution of volume reduction at 95%
confidence. Note that the probability distribution for per-
centage of crystallization is less well constrained than that
for volume reduction, as it also depends on the total volume
which is not so well constrained. Cooling of the solidified
magma could also contribute further to the volume reduc-
tion, with up to 2% contraction being the estimated value
for solidified Krafla magma. Loss of volatiles from the
magma chamber would reduce the pressure, also leading to

a reduction in volume, but the pressure decrease required to
produce the surface displacements would be between 23 and
370 MPa yr�1 at 95% confidence. This range is too high to
be plausibly produced by the loss of volatiles alone.
[73] The local eastward slope dip for the PS pixels circled

in Figure 15 is 15.7�. Our estimate of the dip of the
landsliding motion is somewhat steeper, which suggests
that there is additional vertical settling. Given that the
displacements we measure are those of the dominant scat-
terers within each pixel, which are most likely the larger
boulders in this case, additional settling is possible.

8. Conclusions

[74] We have developed a method to extract the defor-
mation signal from a series of SAR images for pixels whose
scattering characteristics vary little with time and look angle
(PS pixels). The method works in terrains with or without
buildings and no assumptions about variations in displace-
ment rate are required. We refer this method as the Stanford
method for persistent scatterers (StaMPS).
[75] Using StaMPS we extract the deformation signal

from SAR data acquired over Volcán Alcedo between
1997 and 2001. The signal we find implies deflation of a
subhorizontal, prolate ellipsoidal source, extended in the
direction of the long axis of Isla Isabela, which is consistent

Figure 16. Marginal posterior probability distributions for ellipsoidal source model parameters. The
histograms show the distributions for individual parameters and the scatterplots show distributions for
each pair of parameters.
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with crystallization of a pipe-like magma body at around
2.2 km depth. We also detect displacements on the inner
slopes of the west side of the caldera that are consistent with
landsliding.

Appendix A: Coregistration Algorithm

[76] For image m, we define functions fx
m(xm,ym) and

fy
m(xm,ym) that map range position xm ! x0 and azimuth

position ym ! y0, respectively, where superscript 0 denotes
the master image. For any point k in image m, fx

m(xk
m,yk

m) is
equal to the range offset of the point between image m and
the master image, Dxm,k

0 , and f y
m(xk

m,yk
m) is equal to the

azimuth offset, Dym,k
0 . We approximate fx

m(xm,ym) as a
polynomial function in xm and ym,

f mx xm; ymð Þ � am00 þ am10x
m þ am01y

m þ am11x
mym

þ � � � þ ampq xmð Þp ymð Þqþ � � � ; ðA1Þ

where apq
m represents the coefficient that is pth order in xm

and qth order in ym. Typically we use terms up to second
order. We approximate fy

m(xm,ym) similarly.
[77] When correlation is high between the master and

slave images, as is usually the case for conventional
InSAR, it is possible to estimate D bxm,k0 directly at many
points, using amplitude cross correlation between the two
images. For PS analysis, however, we cannot rely on high
correlation between master and slave images. Instead, we
estimate offsets, Dbxm,kn , between all pairs of images, m
and n, that we expect to be highly correlated. We estimate
the offsets using amplitude cross correlation centered on
point k, with a typical oversample factor of 32 and a

typical window size of 64 pixels. The offsets between two
slave images depend on offsets relative to the master
image as

Dxnm;k ¼ Dx0m;k �Dx0n;k

¼ f mx xmk ; y
m
k

� �
� f nx xnk ; y

n
k

� �
; ðA2Þ

where xk
n = xk

m +Dxm,k
n and yk

n = yk
m +Dym,k

n . We then estimate
the coefficients of function fx

m(xm,ym) for all images
simultaneously, by solving the following linear system of
equations,

� � � � � � �� � � � � � �
� � � 1 xmk ymk �� �1 �xnk �ynk � � �
� � � 1 xmkþ1 ymkþ1 �� �1 �xnkþ1 �ynkþ1 � � �
� � � � � � �� � � � � � �

2664
3775

�
am00
am10
am01
�
�
an00
an10
an01
�

2666666666666664

3777777777777775
¼

�
Dbxnm;k
Dbxnm;kþ1

�

2664
3775;

ðA3Þ

where there is a row for every offset estimate between all
pairs of images that are highly correlated. We use weighted
least squares inversion, with the weighting for each estimate
being 1/sDbx where sDbx is the standard deviation of the

Figure 17. Bathymetry of the Galápagos region, from data compiled by W. Chadwick, Oregon State
University. The contour interval is 500 m.

¼

�
Dbxnm;k
Dbxnm;kþ1

�

2664
3775;
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estimate Dbx. We estimate sDbx from the coherence of the
cross correlation, g, using the formula derived by Bamler
[2000], which states

sDbx ¼
ffiffiffiffiffiffiffi
3

2N

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
pg

h3=2; ðA4Þ

where N is the number of samples in the estimation window
and h is the oversampling factor of the data. We find the
coefficients of fy

m(xm,ym) similarly.
[78] In order to resample image m into the master

coordinate system, the functions we require are actually
the inverse functions, gx

m(x0,y0) and gy
m(x0,y0) that map

position x0 ! xm and y0 ! ym, respectively. We obtain

gx
m(x0,y0) for each image by synthesizing a grid of values of
xm and ym, estimating Dbxm,k0 and Dbym,k0 from fx

m(xm,ym) and
fy
m(xm,ym), and solving for the coefficients of gx

m(x0,y0), bpq
m ,

by inverting the following system of linear equations,

� � � � � � �
1 x0k y0k x0ky

0
k � � �

1 x0kþ1 y0kþ1 x0kþ1y
0
kþ1 � � �

� � � � � � �

2664
3775

bm00
bm10
bm01
bm11
�
�

26666664

37777775 ¼

�
�Dbx0m;k
�Dbx0m;kþ1

�

2664
3775; ðA5Þ

where xk
0 = xk

m + Dxm,k
0 and yk

0 = yk
m + Dym,k

0 . We find
gy
m(x0,y0) similarly.

Appendix B: Amplitude Dispersion Thresholding

[79] Ferretti et al. [2001] show that for a constant signal
and high signal-to-noise ratio (SNR), DA � sf, where sf is
the phase standard deviation. They plot the relationship
using simulation, which we have repeated in Figure B1. The
model consists of a constant signal of amplitude 1, with
additive noise selected from a complex circular Gaussian
distribution with a characteristic standard deviation sn for
both the real and imaginary components. Figure B1 shows
that given 34 images, bDA is a reasonable proxy for sf, for
low values of sf.
[80] However, Figure B1 might lead one to conclude thatbDA is a better proxy for phase stability than it really is, for

two reasons. First, the error bars show the variability of bDA
for a given value of sn, but it is the variability of sn for a
given value of bDA that is required. Although this variability
depends on the chosen distribution of sn, which is arbitrary
here, we can get an idea of the variability of sn for any
given value of bDA from Figure B1. For instance, given this
simulated distribution of sn, DA = 0.3 indicates a range for
sn of about 0.28 to 0.4 at 68% confidence. Second, although
a given value of sn implies a particular value of sf, the
variability in phase for a finite sample is better represented
by the standard deviation estimated from each sample, bsf,
which varies about sf. In this example, a range for sn of
0.28 to 0.4 implies a range for bsf of about 0.25 to 0.54, at
68% confidence. Thus, even for a relatively small value ofbDA = 0.3, the variability in phase stability is rather large. An
alternate way to view the relationship between bDA and
phase stability is by plotting the same data in a scatter plot
as in Figure B1b, where the variability of bsf for any given
value of bDA is immediately apparent. It is also apparent that
although DA tends to the theoretical limit for the Rayleigh
distribution of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� pÞ=p

p
’ 0.523, as SNR tends to zero

[Ferretti et al., 2001], estimated values of bDA from finite
samples can be somewhat greater.
[81] The actual relationship between bDA and bsf for any

given data set depends on the distribution of SNR within the
data set. We can estimate a model distribution of SNR for
any given data set from bDA, and then use this to build a
simulated distribution of bsf versus bDA. First, we estimate
SNR distributions for the data set by applying the model of
signal plus circular Gaussian noise. We simulate a
distribution of bDA for a range of SNR values, and solve
for the weighted sum of individual SNR distributions that
best fits the distribution of bDA in the data, using a

Figure B1. Amplitude dispersion numerical simulation
results. The signal model is zi = g + ni (i = 1, � � �, 34). The
value of g is fixed to 1 while the standard deviation, sn, of
both the real and imaginary components of the noise, ni, is
incremented from 0.05 to 0.8. For each value of sn, we
calculate 5000 estimates of bDA. (a) Mean values of bDA
plotted for each value of sn, as by Ferretti et al. [2001],
with error bars representing one standard deviation. Also
plotted are corresponding values of phase standard devia-
tion, sf. (b) Same data plotted in a scatterplot of the
estimated phase standard deviation, bsf, versus bDA for all
values of sn.
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nonnegative least squares algorithm to determine the
weightings. Two examples are shown in Figure B2, the first
for 15 images acquired over Volcán Alcedo and the second
for 24 images acquired over Mount St. Helens in Washington
State. Initially, we tried fitting the data for all values of DA

but found for higher values that the model always
systematically underfit the data, so we only attempted to
fit values of bDA < 0.5. The systematic misfit of the data
implies that the model does not exactly reflect reality. This
was also the conclusion of Kampes [2005], who analyzed
data acquired over Berlin and found the mean value of bDA
to be 0.56. As the maximum theoretical mean value of bDA is
0.523, it is clearly impossible to explain this distribution as
the sum of distributions for different SNRs. The underlying
assumption of this model is that any pixel can be
characterized by fixed SNR in time. As we expect the
SNR for some pixels to vary with time, it is not surprising
that the model is unable to fit the data distribution exactly.
However, for lower values of bDA the model is adequate.

Given our model distributions of SNR, we then simulate the
distribution of bsf versus bDA, as shown in Figure B3. If we
took bsf � 0.6 as indicative of phase stability [Colesanti et
al., 2003b], simulated values of bsf for the Mount St. Helens
data set would indicate that there were no stable scatterers at
all, according to this definition of phase stability. For the
Alcedo data set, the simulated values indicate that even

Figure B2. Distribution of amplitude dispersion for (a) 15
images acquired over Volcán Alcedo and (b) 24 images
acquired over Mount St. Helens. Also plotted are the
distributions predicted from the best fitting model SNR
distributions.

Figure B3. Scatterplots of simulated phase standard
deviation versus amplitude dispersion for model distribu-
tions of SNR for (a) Volcán Alcedo and (b) Mount St.
Helens.

Figure B4. Percentage of high-phase stability pixels (bsf �
0.6) for different threshold values of bDA, given our model
distributions of noise standard deviation for data acquired
over Volcán Alcedo.
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choosing pixels with bDA < 0.25 does not necessarily imply
good phase stability.
[82] The phase analysis steps of PS methods that rely on a

functional model of temporal deformation to identify PS
pixels require an initial selection of pixels as PS candidates.
These candidates should provide spatial coverage of at least
3 to 4 candidates/km2 [Colesanti et al., 2003b] and most of
the candidates must be stable [Kampes, 2005]. Figure B4
shows, for the Alcedo data set, the percentage of area that
meets the minimum candidate density requirement and the
percentage of candidates that have good phase stability, for
any chosen bDA threshold. If using bDA to pick the candi-
dates, the density requirement pushes the bDA threshold
value up and the stability requirement pushes it down;
hence there is no value that satisfies both requirements for
the Alcedo data set.
[83] The phase analysis step in StaMPS does not require

that most PS candidates are in fact PS pixels, so we are free
to set bDA as high as we like. Our criterion for phase stability
is also more relaxed than bsf � 0.6, as we expect PS pixels
in rural areas to have lower SNR than those in urban areas.
Our only requirement is that the signal be distinguishable
from the noise, and on this basis we find PS pixels even in
the Mount St. Helens data set. In theory, we could run the
phase analysis step with no bDA thresholding at all, but in
practice computational times are greatly improved by
thresholding. We choose a threshold value of bDA that
reduces the data volume by about an order of magnitude and
includes most low simulated bsf values. This is typically in
the region of 0.4.

Appendix C: PS Probability

[84] We expect a correlation between gx and the proba-
bility that pixel x is a PS pixel. By binning and normalizing
the values of gx we can estimate the probability density of
gx, p(gx). We treat our population of pixels as the union of
two populations, population A containing only PS pixels
and population B containing only non-PS pixels; p(gx) is,
then, a weighted sum of the probability density for the PS
pixels, pA(gx), and the probability density for the non-PS
pixels, pB(gx) (see Figure C1), i.e.,

p gxð Þ ¼ apA gxð Þ þ 1� að ÞpB gxð Þ; ðC1Þ

where 0 � a � 1. In order to derive pB(gx), we simulate 106

pseudopixels with random phase, i.e., W{yx,i � eyx,i} =

exp(
ffiffiffiffiffiffiffi
�1

p
R), where R is a random variable in the interval

[�p, p], and follow the steps described above to arrive at a
value of gx for each pseudopixel. We bin these values and
normalize the distribution to obtain an estimate for pB(gx).
For low values of gx, i.e., �0.3, pA(gx) � 0 which implies

Z 0:3

0

p gxð Þ dgx ¼ 1� að Þ
Z 0:3

0

pB gxð Þ dgx: ðC2Þ

[85] We use the data to evaluate the integral on the left-
hand side and the simulation to evaluate the integral on the
right-hand side. Thus we are able to estimate a conservative
value for a. For pixel x, the probability that it is a PS pixel is

P x 2 Að Þ ¼ 1� 1� að ÞpB gxð Þ
p gxð Þ : ðC3Þ

[86] In practice, due to the presence of noise, the function
pB(gx)/p(gx) may not be monotonically decreasing as
expected, so we smooth it first by convolution with a 7 point
Gaussian window.
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34(12), 1025–1028.

Colesanti, C., A. Ferretti, F. Novali, C. Prati, and F. Rocca (2003a), SAR
monitoring of progressive and seasonal ground deformation using the
permanent scatterers technique, IEEE Trans. Geosci. Remote Sens.,
41(7), 701–1685.

Colesanti, C., A. Ferretti, C. Prati, and F. Rocca (2003b), Monitoring land-
slides and tectonic motions with the permanent scatterers technique, Eng.
Geol, 68(1–2), 3–14.

Crosetto, M., A. Arnaud, J. Duro, E. Biescas, and M. Agudo (2003),
Deformation monitoring using remotely sensed radar interferometric
data, paper presented at 11th International FIG Symposium on Deforma-
tion Measurements, Geod. and Geod. Appl. Lab., Dep. of Civ. Eng.,
Patras Univ., Santorini, Italy.

Figure C1. An example probability density for gx, shown
in gray, for a given range of bDA,x. The probability density is
the sum of two scaled probability densities, that for PS
pixels, shown by the dashed line, and that for non-PS pixels,
shown by the dotted line.

B07407 HOOPER ET AL.: PS ANALYSIS OF ALCEDO DEFORMATION

20 of 21

B07407



Efron, B., and R. Tibshirani (1986), Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy, Stat. Sci.,
1(1), 54–77.

Ferretti, A., C. Prati, and F. Rocca (2000), Nonlinear subsidence rate esti-
mation using permanent scatterers in differential SAR interferometry,
IEEE Trans. Geosci. Remote Sens., 38(5), 2202–2212.

Ferretti, A., C. Prati, and F. Rocca (2001), Permanent scatterers in SAR
interferometry, IEEE Trans. Geosci. Remote Sens., 39(1), 8–20.

Ferretti, A., F. Novali, R. Bürgmann, G. Hilley, and C. Prati (2004), InSAR
permanent scatterer analysis reveals ups and downs in the San Francisco
Bay Area, Eos Trans. AGU, 85(34), 317–324.

Geist, D., K. A. Howard, A. M. Jellinek, and S. Rayder (1994), The vol-
canic history of volcan-alcedo, Galapagos Archipelago—A case-study of
rhyolitic oceanic volcanism, Bull. Volcanol., 56(4), 243–260.

Goldstein, R. M., and C. L. Werner (1998), Radar interferogram filtering for
geophysical applications, Geophys. Res. Lett., 25(21), 4035–4038.

Green, J. (1994), Recent activity in Alcedo volcano, Isabela island, Not.
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