

Evidence of a subducted slab beneath central Taiwan

Speaker: Yen-Fu Chen

References

- Lallemand, S., Font, Y., Bijwaard, H., Kao, H., 2001. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics 335, 229-253.
- Chen, P.-F., Huang, B.-S., Liang, W.-T., 2004.
 Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times. Earth and Planetary Science Letters 229, 61-71.

Hypotheses of the Taiwan orogeny

• Thin-skinned model

Thick-skinned model

Seismic tomography

- Construct images from seismic wave.
- In the same layer, the different velocities may be caused by different materials.

known:
$$t, L_1, L_2, L_3, L_4$$

find: V_1, V_2, V_3, V_4
 $\frac{L_1}{V_1} + \frac{L_2}{V_2} + \frac{L_3}{V_3} + \frac{L_4}{V_4} = t$

- *t* : travel time from hypocenter to the station
- L_i : length of ray path in each square

 V_i : velocity of squares

 If there are many ray paths, then we can resolve the unknowns and obtain velocity structures.

Mathematical formulation

Known: initial origin time, initial hypocenter, initial velocity model

Cause by difference of origin time

Cause by difference of location

 $r = \Delta t_e + \frac{\partial t}{\partial x_e} \Delta x_e + \frac{\partial t}{\partial y_e} \Delta y_e + \frac{\partial t}{\partial z_e} \Delta z_e + \sum_{n=1}^{N} \frac{\partial t}{\partial y_e} \Delta v_n$

Cause by difference of velocity model

r : arrival time residual

 $\Delta t_e, \Delta x_e, \Delta y_e, \Delta z_e$: perturbation to hypocentral parameters Δv_n : perturbation to velocity parameters

 $\frac{\partial t}{\partial x_e}, \frac{\partial t}{\partial y_e}, \frac{\partial t}{\partial z_e}, \frac{\partial t}{\partial v_n}: \text{ calculate from initial velocity model}$

(Thurber, 1983)

Inversion

L, number of ray paths; m, number of events; N, number of velocity parameters.

Global tomography

- Bijwaard et al., 1998
- Data (1964-1995)
 - ISC (International Seismological Center)
 - USGS's NEIC (US Geological Survey's National Earthquake Information Center)
 - Temporary seismic stations
- Relocated by Engdahl et al., 1998
- 7.6 million teleseismic P, pP, and pwP data

Resolution analysis

- Spike test (similar to Checkerboard test)
- First, add velocity anomalies to initial velocity model with positive and negative sign alternately.
- Second, calculate synthetic travel times from each hypocenter to stations through spike velocity models.
- Third, synthetic travel times are inverted for the spike velocity models from the initial model.
- If the initial pattern is restored in some areas, then the resolution of those areas is good.

4 sizes of spikes (0.6, 1.2, 1.8 and 2.4 °) and 13 different depths between 18 and 710 km.

Resolution for 1.2° is better from 53 to about 320 km.

In 710 km, the resolution is worsen to 1.8° .

Seismic effects of a subducted slab

- Earlier arrival time
- Reduced amplitude
 - The velocity in the slab is faster than velocity in the surrounding material, so the wavefront in the slab becomes separated from the wavefront in the surrounding material.
 - Furthermore, the energy in the slab is drained out and flowed in the surrounding material.

(Vidale, 1987)

Cnes/Spot Image 2011 MIRC/JHA U.S. Navy, NGA, GEBCO ane IRCaO

No. Centroid parameters

	Date			Time			Latitutde	Longitude	Depth	$M_{\rm o} \ (10^{25})$
	Y	Μ	D	h	m	S	λ	ϕ	h	dyne cm
1 ^a	1998	3	29	19	48	16.2	-17.57	-178.85	554.0	64
2	1998	5	16	2	22	3.2	-22.27	-179.35	609.0	23
3	1998	12	27	0	38	26.8	-21.69	-175.86	160.0	20
4	2000	6	14	2	15	25.8	-25.45	178.38	615.0	5
5 ^a	2000	8	15	4	30	8.8	-31.42	-179.95	367.0	9
6 ^b	2000	12	18	1	19	21.6	-21.11	-178.98	656.0	7
7	2001	4	28	4	49	53.4	-18.07	-176.68	367.0	21
8	2002	8	19	11	8	24.3	-24.16	178.49	699.0	430

Why choose earthquakes from Tonga-Kermadec?

- Suitable azimuth
- Suitable epicentral distance

Data analysis

Bandpass: 1~4Hz

The different colors stand for different stations.

P wave aligned at 700s.

Those waveforms show similar patterns but different

Data analysis

• Differential residual times relative to KMNB

 $\text{DRTS}_{\text{bats}} = \left(T_{\text{bats}}^{\text{obs}} - T_{\text{bats}}^{\text{the}}\right) - \left(T_{\text{kmnb}}^{\text{obs}} - T_{\text{kmnb}}^{\text{the}}\right)$

bats: any BATS station

kmnb: Kinmen station

obs: observed travel time that is corrected for station elevations

the: theoretically calculated travel time from iasp91

DRTS of the Tonga-Kermadec events

P ratios of the Tonga-Kermadec events

- The reduced amplitudes are concentrated in central Taiwage
 - High-velocity anomaly in the mantle
 - High seismic attenuation in the crust

High-velocity anomaly in mantle or high seismic attenuation in the crust?

• If the reduced amplitudes are resulted in low Q crustal materials, then those materials trend to be slow for seismic wave.

High-velocity anomaly in mantle or high seismic attenuation in the crust?

- If the observed reduced amplitudes are resulted in low Q crustal materials, then those materials trend to be slow for seismic wave.
- If it is result of crust effects, the observed patterns will be independent of earthquake azimuths.

▲ DRTS of the Tonga-Kermadec events

P ratios of the Tonga-Kermadec events

- For crustal effects to produce the linear positive correlation, the lateral heterogeneities would be unreasonably large.
- The positive correlation indicates the subducted slab is hotter to the north. It is consistent with the idea that arc-continent collision is propagating southward.

Conclusion

• According to the global tomography and teleseismic data analysis, I consider the subducted slab exists beneath central Taiwan.

