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Moment analysis of the probability distribution of different sandpile models

S. Libeck
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(Received 1 April 1999

We reconsider the moment analysis of the Bak-Tang-Wiesenfeld and the stochastic sandpile model intro-
duced by ManndJ. Phys. A24, L363(1991)] in two and three dimensions. In contrast to recently performed
investigations our analysis reveals that the models are characterized by different scaling behavior, i.e., they
belong to different universality classes.

PACS numbd(s): 64.60.Ht, 05.65tb, 05.40-a

. INTRODUCTION Ennr— Ennrt 1. )

The Bak-Tang-Wiesenfel(BTW) model was introduced In this way the nei_ghboring sites may be activated and an
as a paradigm of the concept of self-organized criticality2valanche of relaxation events may take place. These ava-
which describes the emergence of spatiotemporal correl gnches are characterized by several physical properties like
tions in slowly driven dissipative systenp$,2]. Despite its Oi}e df’s'ﬁﬁit(?g&?gé thg)il?r)l(gtlc?mneiv(irl)}rigeezra(r)(?apaa(rglljlrer}bl?r:-
Gimensional BTW el i not wel understooe. Especiall 2168t the configuraton s stahihe raius (racis o
he exponents which rmines the avalanche distributi ;
;rg enoF')tokﬁO\tlin ex(;ctcljye.teSevefasl tnsn?eﬁczl Caﬁe?ns;tsbl&gr%ug[igrrllgcsiiosjﬁjag)ées;a;gvagil(;?l\;rgzﬁgc%g probability distri-
made but do not provide consisting resyis-10]. Recently
De Menecket al. performed a moment analysis of the BTW Py (X) ~ X" (4
model[11] which was extended by several authors to differ-
ent sandpile modelgl2—14. Especially the moment analy-
sis of the size distribution of the BTW and Manna sandpile
model has led Chess al. to the conclusion that both mod-
els are characterized by the same scaling exponents and thus X~X" x| 5)
belong to the same universality cldg?]. In this work we , , )
reconsider the moment analysis and compare the scaling b@1€ obtains the scaling relationg, = (7, —1)/(rx—1).
havior of various avalanche quantities for the BTW and '€ Scaling exponents,, describe the static avalanche
Manna model. Our analysis turns out that in contragtl®] properties as well as Its propagation. For instance, the expo-
the moment behavior of both models differs significantly, nent ys, indicates if multiple toppling events are relevant

i.e., the BTW and the Manna model belong to different uni-(ﬁ’safl) cl)rd!rrelevant b;saﬁ 1). Tlhe (re]xpo%antyar %(Iqualzls |
versality classes. the fractal dimension of the avalanches. A possible fracta

behavior of the avalanche boundary corresponds to the in-
equalityD — 1<y, <D. Finally, the exponeny,, is usually
Il. MODELS AND SIMULATIONS identified with the dynamical exponent

. . . . A stochastic version of the BTW model was introduced
The BTW model is defined on B-dimensional square by Manna[15]. Here, critical sites relax to zero, i.eE,

lattice of linear sizeL in which non-negative integer vari- .0 if E,=E, and the removed energy is randomly distrib-

ablesE, represent a physical quantity such as the local enyteq to the nearest neighbors in the way that one chooses

ergy, stress, hejght of a sand column, etc. One pertgrbes ”Pﬁndomly for each energy unit one neighbor. EQe=1 the

system by adding particles at a randomly chosenrsiée-  pehavior of the model corresponds to a simple random walk.

cording to Above this value E.=2) is the choice of the critical energy
irrelevant to the scaling behavi¢see Fig. 1

E,—~E,+1, withrandonr. 1) Recently Dhar introduced a modified version of the two-

dimensional Manna model where the energy of critical sites

A site is called unstable if the corresponding variable exis not reduced to zero b ;—E; ;—2. The energyAE

ceeds a critical valug&, i.e., if E;=E;, where the critical =2 is then equally distributed with probability 1/2 to the

value is given byE.=2D. An unstable site relaxes, its value sjtes (+1,j) or otherwise to the sites (= 1) [16]. In this

is decreased b¥. and the two-dimensional2D) nearest case it is possible to extend an operator algebra, which was

characterized by the avalanche exponents with x
e{s,a,t,r,p}. Assuming that the size, area, etc. scale as
power of each other,

neighboring sites are increased by one unit, i.e., successfully applied in studying the BTW mod8l, to this
modified Manna model.
E,—E,—E, 2 Compared to the BTW model the dynamics of the Manna

model with its stochastic distribution of the energy to the
nearest neighbors can be interpreted as a disorder effect. A
*Electronic address: sven@thp.uni-duisburg.de different kind of disorder effects were investigated in di-
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10° . . exponentsy,, of both models differ significantly. But one
has to mention that at least one of the scaling exponents of
the BTW model ., cannot be determined in this way
since the assumed scaling behaviera?sa is not well de-
fined[9,12].
] However, the conjecture of Ben-Hur and Biham was con-
firmed for D=2 by a numerical determination of the ava-
i lanche exponentsg, 75, 7, and 7, [9] which again differ
significantly for both models. In this analysis the exponents
of the Manna model were obtained by a direct regression
analysis as well as a simple finite-size scaling analysis of the
corresponding probability distributions. In the case of the
. BTW model it was found that the probability distributions
are affected by unconventional logarithmic finite-size correc-
1o , , tions [4,9] which lead to uncertain results for the simple
¢ 10° * 10° finite-size scaling ansatz. Taking these corrections into ac-
a count it is possible to estimate the values of the exponents
FIG. 1. The probability distributionP,(a) of the two- 9] Py an extrapolation td —o=. But one has to note that
dimensional Manna model fdE.e{2,3,5,1Q and various system the a§sumed Iogar_|thm|c corrections are foun_d o.n.Iy numeri-
sizesL. For L<<512 the curves are shifted in the downward direc- cally, i.e., there exist up to now no analytical justification of

tion. No significant difference between the curves for different val-this unconventional behavior. _ _
ues of the critical energy can be observed, E.does not affect These difficulties vanish in the three-dimensional case

the scaling behavior of the model. where both models fulfill the finite-size scaling ansatz which
makes the analysis much eas|80]. The accuracy of the

rected sandpile models by introducing stochastic topp|in€fet§rm|natlon_|s sufficient to show that both models belong
conditions. In particular the exact solution of the directed! different universality class¢80]. Additionally the scaling
BTW model [17] was used as a starting-point in order to behavior of the three-dlme.nsmnal Manna model is strqngly
examine how the known scaling behavior of the system i€ffected by multiple toppling eventsr{# r,) whereas it
affected by the stochastic toppling rules. Depending on th&eems that the rare multiple toppling events of the BTW
details of the introduced disorder a collapse of the criticaimodel does not contribute to the scaling behay®)30].
behavior[18], nonuniversal critical behavidi9,20 as well Taking this results into c0n3|derat|on we have convincing,
as a crossover to the different universality class of directe@Ut Of course not completely rigorous, arguments that the
percolation[21] was observed. BTW anq the Manna model does not belong to the same
Thus an important question is if the scaling behavior ofuniversality class. _
the Manna model differs from the scaling behavior of the Recently this statement was questioned by Chessd.
BTW model, i.e., if the additional fluctuations of the Manna [12] who performed a moment analysis of both models in
model could change the universality class. A real-spac&nalogy to the investigations of De Meneehal. [11]. The
renormalization scheme predicted that both models belong t8-moment of the probability distributioR,(x) is defined as
the same universality cla$2,23. Here, the authors used a
mean-field-type approximatiof24] in order to perform a .
block transformation. Therefore it is not clear if this renor- <Xq>_J AxXIPy(x). ©)
malization ansatz is an appropriate tool to take the additional

fluctuations of the energy distribution of the Manna modelThe finite system sizé& causes a cutoff of the probability
Into account. _ _ . distribution atx,~L”x. Assuming a power-law behavior
A momentum space analysis of Langevin equations of thgf the distributions[Eq. (4)] the scaling behavior of the

BTW and the related Zhang modl}ﬂ5] pI'EdiCtEd that both g-moment is dominated by the upper boundary of @

models are characterized by the same expori@®27 and

numerical investigations confirmed this predictif®,28]. (X ~L (@ 7)
Unfortunately up to now no extension of the momentum
space analysis to the Manna model could be performed. Thl? >7,—1 and where the moment exponent(q) is given
crucial point of this renormalization approach is the choiceb 9= 7x P aisg

of an appropriate noise correlatp27]. Compared to the y

BTW model the corresponding analysis of the Manna model

requires a different noise correlator. But a different noise- ox ()= Yxr(Q+1—17y). 8
correlators could lead to a different critical behavisee for
instance[29]). For g<7,—1 the moment exponent,(q) behaves nonlin-

The first numerical indication that both models belong toear with respect t@. The normalization of the probability
different universality classes was reported by Ben-Hur andlistributions results inr,(q)=0 for g—0. Performing nu-
Biham [8]. They measured several scaling exponents merical investigations one can obtain the behavior of the
via Eq. (5) and found, in particular, that the dynamical ex- exponentr,(q) via a regression analysis of(k¥), as a func-
ponentsz, the multitoppling exponentg,, and the boundary tion of InL, or via the logarithmic derivative
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6.0 T T T TABLE I. Exponentsy,, for the BTW and Manna model. The
values are obtained from a linear regression according ta .
50 L and the errors are of the orddry,,<0.01. The real error which
’ includes the uncertainty of the whole moment analysis is hard to
S estimate and increases this value significafslye text
40 ©
BTW, 2D Manna, 2D BTW, 3D Manna, 3D
=30 Yer 2.764 3.004 3.302
© Yar 2.021 2.025 3.004 3.076
00 | Yer 1.540 1.618 1.713
Yor 1.266 1.42[8]
YVer 1.008 1.006 0.995 1.010
1.0
0.0 - , . 3, does not imply that both models belong to the same uni-
~0.0 0.5 1.0 1.5 2.0 versality class. It is possible that the models display different

q values of y,, which results in different values of,=1
) ) —2 /vy, . Thus two different models belong to the same uni-
FIG. 2. The exponentr(q) ando(q) of the two-dimensional  ,ergqjity class if they are characterized by the same linear
Manna model. The extrapolation to the horizontal axis yields thedependence of(q) for all relevant quantities.
exponentsrs=1.286 andr, = 1.729, respectively. The slope corre- """ joiormination of the intercept for various distribu-
sponds to the scaling exponents andy,, where the latter equals tions allows to estimate the accuracy of the moment analysis
one (see Table )l The positions and sizes of the circles on the : '
horizontal axes correspond to the values and error bars of the e@ the case of th_e Manna modell we obtam_from. th? mpment
ponentsr,=1.275+0.011 andr, = 1.743+0.025, obtained from a analysis of the size, area, duration and radius distribution the
regression analysig]. values 3 = —0.7900+0.002, X ,=—0.7202-0.003, 2t=.
—0.7684+0.004, %, =—0.7333:0.005. The corresponding
values of the scaling exponenyg, are listed in Table I. The

9) above error bars correspond to the uncertainty of the linear
regressior[Eq. (10)]. The average valug yannap=0.7530

) _ +0.037 agrees witl, = 3/4 predicted if9]. The latter error

_The behavior oi,(q) as a function ofj allows to deter-  par reflects the uncertainty of the whole method and could be
mine the scaling exponeng,,, which corresponds to the yse as a lower bound for the error of the avalanche exponent
slope, and the avalanche exponepivhich can be obtained A 7,>0.037. Typical error bars of a direct analysis of the
from an extrapolation to the horizontal axiq. (8)]. Thisis  propapility distributions are\ 7, <0.025.
shown in Fig. 2 where the exponentg(q) ando,(q) of the
Manna model are plotted as a function @fThe values of
the exponents are in agreement with those of previous inves-
tigations obtained from a regression analysis a finite-size
scaling analysis, as well as a moment analySid2]. But We now consider the moment analysis of the BTW and
one has to mention that the accuracy of the regression analfanna model for the size, area, duration, radius, and perim-
sis is higher than the accuracy of the moment analysis. In theter distribution and compare the corresponding results. In
case of the regression analysis one obtains the expomgnts the case of the BTW model we analyze the probability dis-
by a direct fit to the distribution. Whereas for the momenttributions of lattice sizes up th =4096 forD=2 andL
analysis one has first to calculate the averdgm (6)], sec- =256 for D=3, respectively. Since the Manna model does
ond to fit the logarithmic derivativefEq. (9)] and third to  not display strong finite-size effects as the BTW model it is
extrapolate tar,(q)=0. This leads to a propagation of er- sufficient to consider system sizes only uplte- 2048 for
rors which increases the uncertainty significantly. D=2.

The g-dependence of the moment exponentq) is de- The moment analysis of the size distribution leaded
termined by the avalanche exponefEs. (8)]. Therefore, Chesseet al. to the conclusion that both models are charac-
the moment analysis can be used to distinguish the univererized by the same scaling behavi@®]. Therefore we first
sality classes of different models. Using the scaling relatiorconsider the size distribution and the corresponding exponent

dIn{x%,

IIIl. MOMENT ANALYSIS OF THE BTW AND MANNA
MODEL

Yxr= (7, —1)I(7x— 1), Eq.(8) now reads o4(q) is shown in Fig. 3. In contrast to Chesseaal. who
found that both models display indistinguishable curves for
oy (Q)=yxa+3, (100 g>1 we get slightly different curves. Plotting the derivative

of the exponentsrg(q) with respect tag the differences be-
with > =1—17,. Thus, we get that the intercept of the = come more significarisee inset of Fig. 3 In the case of the
linear g-dependence of the moment exponen{q) is the  Manna model the derivative of the exponent saturates
same for all distributiongsite, area, duration, ejcand is  quickly with increasingg. Whereas the derivative,o(q)
therefore a characteristic quantity of the model. Considerindor the BTW model is characterized by a finite curvature, i.e.,
two models we get that different values bfimplies differ-  the exponenty,, is not well defined in the case of the BTW
ent universality classes. But the same value of the intercephodel. The duration probability distribution displays a simi-
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FIG. 3. The exponenir¢(q) of the two-dimensional BTW and
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FIG. 5. The exponentr,(q) and o,(q) (insey of the two-

Manna model. The curves differs slightly. The derivative of bothdimensional BTW and Manna model. One obtains for both models

curves is plotted in the inset and reveals that the expongief) of

the same asymptotic slopésee Table )l which agree withy,, =2

the BTW model is not well defined in the sense that no clear satuand y,, = 1. But the extrapolation to the horizontal axis yields dif-
ration of the exponent can be seen fpr 1.

lar behavior as it can be seen in Fig. 4. Again the exponent’’

ferent values for the models indicating that the BTW and the Manna
model are characterized by different avalanche exponeptsnd
respectively.

a+(q) of the BTW model is characterized by a finite curva- gvalanche exponents, and 7, .

ture.

The analysis of the perimeter distribution yields again a

The o exponents of the radius and area distribution aresimple linearq dependence of the exponenis,(q) (not
plotted for both models in Fig. 5. In the case of the BTW shown) and we obtainy,, = 1.266+ 0.019 which corresponds
model the area and radius distributions display in contrast tgy the fractal dimension of the boundary. This value is in
the size and duration distribution the usual behavior. El]'he agreement with that obtained from a direct ana|ysis of the

dependence of the exponemtg(q) ando,(a) is given by a

scaling relationp~r”er and differs significantly from the

linear function and the slopes correspond to the trivial valueggjue of the Manna modey,, = 1.42[8].

var=2 (compact avalanchgsand v,,=1 (see Table )

Due to the nonlinear behavior of the size and duration

These exponents are the same for the Manna model and tigstribution we use the area, radius, and perimeter distribu-
corresponding curves are parallel. But as Fig. 5 shows thefgons in order to estimate the intercéptof the BTW model
is a clear shift between the curves of the BTW and Mannang obtain® gy »p=0.391+0.011. But one has to be care-

model, i.e., both models are characterized by two differenty|ly to compare this result with the corresponding value of

3.0

2.0 |

1.0 |

0.0

— BTW
——- Manna

1.5 2.0

the Manna model. The performed moment analysis based on
the assumption that the scaling behavior of the BTW model
is given by a pure power-law behavifEq. (4)]. But this
assumption is in contradiction to the observed logarithmic
finite-size correction$4,9] as well as to recently reported
investigations where a multifractal behavior of the distribu-
tion was observefiL1]. In the latter case no avalanche expo-
nent could be defined whereas the analysis of the logarithmic
finite-size corrections yiel® gy o,p~2/3 [9] which again
differs significantly from the corresponding value of the
Manna model.

These results lead us to the conclusion that the moment
analysis is applicable in order to determine the geometric
properties of the avalanches of the BTW model, eg.,

Ypr- The obtained results are in agreement with those of
previous investigations which based on different methods of
analyzing. But in contrast to the geometric properties the
moment analysis of the dynamical propertisge and dura-

tion) of the avalanches exhibit a non-trivial behavior. This

FIG. 4. The exponent,(q) of the two-dimensional BTW and Shows that the assumed simple power-law behavior is not
Manna model. The derivative of both curves is plotted in the insefulfilled and that scaling corrections to E¢4) cannot be
and reveals that the exponen{q) of the BTW model displays the neglected in these cases. The question whether these correc-
same complicated behavior as the exponeyty).

tions can be interpreted in terms of unconventional finite-size
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' ' ' +0.022) and Mannas(,= 1.436+ 0.018) model are different
60 ; for D=3.

The determination of the intercepisconfirms this resuilt.
Analyzing for both models the size, area, duration and radius
distribution we obtain 3gny 3p=1.016£0.056 and
> Manna 35= 1.333£0.036. The intercepts differs signifi-
cantly.

Finally we consider the area and size distribution for both
models. As mentioned above the three-dimensional Manna
20 L model behaves different than the BTW model in the sense
that multiple toppling events affects the scaling behavior de-
—— BTW cisively. This result can also be obtained from the moment
——- Manna analysis. In the case of the BTW model no significant differ-
ence between the exponenig(q) and o4(q) can be ob-

) served (see Fig. 6. Whereas for the Manna model both

0.0 0.5 1.0 15 2.0 curves are characterized by different slopes as can be seen in
q the inset of Fig. 6. A regression analysis yield,=3.302

, , +0.06 andy,,=3.076-0.09, respectively. Thus multiple

FIG. 6. The exponent(q) of the three-dimensional BTW and toppling events affect the scaling behavior of the Manna

Manna model. One obtains for both models the same asymptoti .
slopes(see Table)lwhich agree withy,,= 3 (compact avalanchgs fodel strongly ¢s# 7,), in contrast to the BTW model.

In the case of the BTW model both exponeatgq) ando,(q) are
plotted, but no difference between the curves can be seen. The inset IV. SUMMARY

shows the exponenisy(q) (solid line) ando,(q) (dotted ling for .
the Manna model. The different slopes indicate that multiple top- In summary we performed a moment analysis of several

pling events are relevant in the case of the Manna mogg)} ( Brgbzat::::ijdfg Ibwg)?guﬁfdt?ﬁ atB t-lr—]\év C%??eg)?)?lg?ngq?‘r?:r!n;or:t
Yorl Yar=1). exponentso,(q) differ significantly for both models show-
ing that the BTW and Manna model belong to different uni-
effects[4,9], or correspond to a crossover effect from theyersality classes. Recently performed simulations of sandpile
boundary to the bulk regimé,10], or indicate a multifractal models on a Sierpinski gasket display again the different
behavior of the two-dimensional model1], remains open.  scaling behavior of both mode81,32). Our results confirm
In the following we briefly compare the three-dimensionalthe universality hypothesis of Ben-Hur and Biham where the
BTW and Manna model and focus our attention on thescaling behavior of sandpile models is determined by the

analysis of the size and area probability distribution. In Fig.way in which the relaxing energy of critical sites is distrib-
6 we plot the moment exponent,(q) for both models. The yted to the neighboring sitd§].

result is similar to the two-dimensional caéig. 5. The
slopes of the curves agree with the valug=3 indicating

that both models are characterized by compact avalanches
(see Table )L But the two curves are shifted which shows | would like to thank D. V. Ktitarev for useful discussions
that the avalanche exponentg of the BTW (r,=1.352 and a critical reading of the manuscript.

5.0

i
)

20

iy
Q
6,(q) and c,(q)

q
w
o
T
o
o

1.0 |

ACKNOWLEDGMENT

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. LB%.381 [13] A. Vazquez and O. Sotolongo-Costa, e-print

(1987). cond-mat/9811414, 199@inpublishegl

[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev38 364 [14] A. Chessa, A. Vespignani, and S. Zapperi, e-print
(1988. cond-mat/9811365, 199@inpublishedl

[3] D. Dhar, Phys. Rev. Let64, 1613(1990. [15] S. S. Manna, J. Phys. 24, L363 (1991).

[4] S. S. Manna, J. Stat. Phys9, 509(1990. [16] D. Dhar, Physica A270, 69 (1999.

[5] P Grassberger and S S Manna, J Pl(lf;_lﬁancé 51, 1077 [17] D Dhal’ and R Ramaswamy, PhyS ReV. L§3;1659(1989
(1990. _ [18] B. Tadicet al, Phys. Rev. A45, 8536(1992.

[6] K. Christensen and Z. Olami, Phys. Rev4BE 3361(1993. [19] S. Libeck, B. Tadicand K. D. Usadel, Phys. Rev. &3, 2182

[7] P. A. Robinson, Phys. Rev. £9, 3919(1994). (1996

[8] A. Ben-Hur and O. Biham, Phys. Rev.33, R1317(1996. 1,5 g 1oicand R. Ramaswamy, Physica224, 188 (1996.

[9]'S. Libeck and K. D. Usadel, Phys. Rev.55, 4095(1997). E{Zl] B. Tadicand D. Dhar, Phys. Rev. Leff9, 1519(1997).

[10] S. D. Edney, P. A. Robinson, and D. Chisholm, Phys. Rev. . . . .
58, 5395(1998. 22] L. Pietronero, A. Vespignami, and S. Zapperi, Phys. Rev. Lett.

[11] M. De Menech, A. L. Stella, and C. Tebaldi, Phys. Re\b& 2 1690_(1994)_' . .
2677 (1998. [23] A. Vespignami, S. Zapperi, and L. Pietronero, Phys. Rev. E

[12] A. Chessa, H. E. Stanley, A. Vespignani, and S. Zapperi, Phys. 51, 1711(1999.
Rev. E59, 12 (1999. [24] M. Katori and H. Kobayashi, Physica 229, 461(1996.



PRE 61 MOMENT ANALYSIS OF THE PROBABILITY ... 209

[25] Y.-C. Zhang, Phys. Rev. Let63, 470(1989. [29] A. Diaz-Guilera, Fractalg, 963(1993.

[26] A. Diaz-Guilera, Europhys. LetR6, 177 (1994. [30] S. Libeck and K. D. Usadel, Phys. Rev.36, 5138(1997).
[27] A Corral and A. Daz-Guilera, Phys. Rev. B5, 2434(1997. [31] F. Daerden and C. Vanderzande, Physicass, 533(1998.
[28] S. Libeck, Phys. Rev. B6, 1590(1997). [32] F. Daerden and C. Vanderzan@epublishedl



