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Moment analysis of the probability distribution of different sandpile models

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 1 April 1999!

We reconsider the moment analysis of the Bak-Tang-Wiesenfeld and the stochastic sandpile model intro-
duced by Manna@J. Phys. A24, L363 ~1991!# in two and three dimensions. In contrast to recently performed
investigations our analysis reveals that the models are characterized by different scaling behavior, i.e., they
belong to different universality classes.

PACS number~s!: 64.60.Ht, 05.65.1b, 05.40.2a
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I. INTRODUCTION

The Bak-Tang-Wiesenfeld~BTW! model was introduced
as a paradigm of the concept of self-organized critica
which describes the emergence of spatiotemporal corr
tions in slowly driven dissipative systems@1,2#. Despite its
analytical tractability@3# the scaling behavior of the two
dimensional BTW model is not well understood. Especia
the exponents which determines the avalanche distribut
are not known exactly. Several numerical attempts w
made but do not provide consisting results@4–10#. Recently
De Menechet al. performed a moment analysis of the BTW
model@11# which was extended by several authors to diff
ent sandpile models@12–14#. Especially the moment analy
sis of the size distribution of the BTW and Manna sandp
model has led Chessaet al. to the conclusion that both mod
els are characterized by the same scaling exponents and
belong to the same universality class@12#. In this work we
reconsider the moment analysis and compare the scaling
havior of various avalanche quantities for the BTW a
Manna model. Our analysis turns out that in contrast to@12#
the moment behavior of both models differs significant
i.e., the BTW and the Manna model belong to different u
versality classes.

II. MODELS AND SIMULATIONS

The BTW model is defined on aD-dimensional square
lattice of linear sizeL in which non-negative integer vari
ablesEr represent a physical quantity such as the local
ergy, stress, height of a sand column, etc. One perturbes
system by adding particles at a randomly chosen siter ac-
cording to

Er°Er11, with randomr . ~1!

A site is called unstable if the corresponding variable
ceeds a critical valueEc , i.e., if Er>Ec , where the critical
value is given byEc52D. An unstable site relaxes, its valu
is decreased byEc and the two-dimensional~2D! nearest
neighboring sites are increased by one unit, i.e.,

Er→Er2Ec , ~2!
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Enn,r→Enn,r11. ~3!

In this way the neighboring sites may be activated and
avalanche of relaxation events may take place. These
lanches are characterized by several physical properties
the sizes ~number of relaxation events!, the areaa ~number
of distinct toppled sites!, the timet ~number of parallel up-
dates until the configuration is stable!, the radiusr ~radius of
gyration!, the perimeterp ~number of boundary sites!, etc. In
the critical steady state the corresponding probability dis
butions should obey power-law behavior@1#

Px~x!;x2tx ~4!

characterized by the avalanche exponentstx with x
P$s,a,t,r ,p%. Assuming that the size, area, etc. scale
power of each other,

x;x8gxx8, ~5!

one obtains the scaling relationsgxx85(tx821)/(tx21).
The scaling exponentsgxx8 describe the static avalanch
properties as well as its propagation. For instance, the ex
nent gsa indicates if multiple toppling events are releva
(gsa.1) or irrelevant (gsa51). The exponentgar equals
the fractal dimension of the avalanches. A possible frac
behavior of the avalanche boundary corresponds to the
equalityD21,gpr,D. Finally, the exponentg tr is usually
identified with the dynamical exponentz.

A stochastic version of the BTW model was introduc
by Manna @15#. Here, critical sites relax to zero, i.e.,Er
→0 if Er>Ec and the removed energy is randomly distri
uted to the nearest neighbors in the way that one choo
randomly for each energy unit one neighbor. ForEc51 the
behavior of the model corresponds to a simple random w
Above this value (Ec>2) is the choice of the critical energ
irrelevant to the scaling behavior~see Fig. 1!.

Recently Dhar introduced a modified version of the tw
dimensional Manna model where the energy of critical si
is not reduced to zero butEi , j→Ei , j22. The energyDE
52 is then equally distributed with probability 1/2 to th
sites (i 61,j ) or otherwise to the sites (i , j 61) @16#. In this
case it is possible to extend an operator algebra, which
successfully applied in studying the BTW model@3#, to this
modified Manna model.

Compared to the BTW model the dynamics of the Man
model with its stochastic distribution of the energy to t
nearest neighbors can be interpreted as a disorder effec
different kind of disorder effects were investigated in d
204 ©2000 The American Physical Society
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PRE 61 205MOMENT ANALYSIS OF THE PROBABILITY . . .
rected sandpile models by introducing stochastic topp
conditions. In particular the exact solution of the direct
BTW model @17# was used as a starting-point in order
examine how the known scaling behavior of the system
affected by the stochastic toppling rules. Depending on
details of the introduced disorder a collapse of the criti
behavior@18#, nonuniversal critical behavior@19,20# as well
as a crossover to the different universality class of direc
percolation@21# was observed.

Thus an important question is if the scaling behavior
the Manna model differs from the scaling behavior of t
BTW model, i.e., if the additional fluctuations of the Mann
model could change the universality class. A real-sp
renormalization scheme predicted that both models belon
the same universality class@22,23#. Here, the authors used
mean-field-type approximation@24# in order to perform a
block transformation. Therefore it is not clear if this reno
malization ansatz is an appropriate tool to take the additio
fluctuations of the energy distribution of the Manna mod
into account.

A momentum space analysis of Langevin equations of
BTW and the related Zhang model@25# predicted that both
models are characterized by the same exponents@26,27# and
numerical investigations confirmed this prediction@8,28#.
Unfortunately up to now no extension of the momentu
space analysis to the Manna model could be performed.
crucial point of this renormalization approach is the cho
of an appropriate noise correlator@27#. Compared to the
BTW model the corresponding analysis of the Manna mo
requires a different noise correlator. But a different noi
correlators could lead to a different critical behavior~see for
instance@29#!.

The first numerical indication that both models belong
different universality classes was reported by Ben-Hur a
Biham @8#. They measured several scaling exponentsgxx8
via Eq. ~5! and found, in particular, that the dynamical e
ponentsz, the multitoppling exponentsgsa and the boundary

FIG. 1. The probability distributionPa(a) of the two-
dimensional Manna model forEcP$2,3,5,10% and various system
sizesL. For L,512 the curves are shifted in the downward dire
tion. No significant difference between the curves for different v
ues of the critical energy can be observed, i.e.,Ec does not affect
the scaling behavior of the model.
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exponentsgpr of both models differ significantly. But one
has to mention that at least one of the scaling exponent
the BTW model (gsa) cannot be determined in this wa
since the assumed scaling behaviors;agsa is not well de-
fined @9,12#.

However, the conjecture of Ben-Hur and Biham was co
firmed for D52 by a numerical determination of the av
lanche exponentsts , ta , t t , andt r @9# which again differ
significantly for both models. In this analysis the expone
of the Manna model were obtained by a direct regress
analysis as well as a simple finite-size scaling analysis of
corresponding probability distributions. In the case of t
BTW model it was found that the probability distribution
are affected by unconventional logarithmic finite-size corr
tions @4,9# which lead to uncertain results for the simp
finite-size scaling ansatz. Taking these corrections into
count it is possible to estimate the values of the expone
@4,9# by an extrapolation toL→`. But one has to note tha
the assumed logarithmic corrections are found only num
cally, i.e., there exist up to now no analytical justification
this unconventional behavior.

These difficulties vanish in the three-dimensional ca
where both models fulfill the finite-size scaling ansatz wh
makes the analysis much easier@30#. The accuracy of the
determination is sufficient to show that both models belo
to different universality classes@30#. Additionally the scaling
behavior of the three-dimensional Manna model is stron
affected by multiple toppling events (tsÞta) whereas it
seems that the rare multiple toppling events of the BT
model does not contribute to the scaling behavior@5,30#.
Taking this results into consideration we have convincin
but of course not completely rigorous, arguments that
BTW and the Manna model does not belong to the sa
universality class.

Recently this statement was questioned by Chessaet al.
@12# who performed a moment analysis of both models
analogy to the investigations of De Menechet al. @11#. The
q-moment of the probability distributionPx(x) is defined as

^xq&5E dxxqPx~x!. ~6!

The finite system sizeL causes a cutoff of the probabilit
distribution atxmax;Lgxr. Assuming a power-law behavio
of the distributions@Eq. ~4!# the scaling behavior of the
q-moment is dominated by the upper boundary of Eq.~6!

^xq&L;Lsx(q) ~7!

if q.tx21 and where the moment exponentsx(q) is given
by

sx~q!5gxr~q112tx!. ~8!

For q,tx21 the moment exponentsx(q) behaves nonlin-
ear with respect toq. The normalization of the probability
distributions results insx(q)50 for q→0. Performing nu-
merical investigations one can obtain the behavior of
exponentsx(q) via a regression analysis of ln^xq&L as a func-
tion of lnL, or via the logarithmic derivative

-
-
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206 PRE 61S. LÜBECK
sx~q!5
] ln^xq&L

] ln L
. ~9!

The behavior ofsx(q) as a function ofq allows to deter-
mine the scaling exponentgxr , which corresponds to the
slope, and the avalanche exponenttx which can be obtained
from an extrapolation to the horizontal axis@Eq. ~8!#. This is
shown in Fig. 2 where the exponentsss(q) ands r(q) of the
Manna model are plotted as a function ofq. The values of
the exponents are in agreement with those of previous in
tigations obtained from a regression analysis a finite-s
scaling analysis, as well as a moment analysis@9,12#. But
one has to mention that the accuracy of the regression an
sis is higher than the accuracy of the moment analysis. In
case of the regression analysis one obtains the exponentx
by a direct fit to the distribution. Whereas for the mome
analysis one has first to calculate the average@Eq. ~6!#, sec-
ond to fit the logarithmic derivatives@Eq. ~9!# and third to
extrapolate tosx(q)50. This leads to a propagation of e
rors which increases the uncertainty significantly.

The q-dependence of the moment exponentsx(q) is de-
termined by the avalanche exponents@Eq. ~8!#. Therefore,
the moment analysis can be used to distinguish the uni
sality classes of different models. Using the scaling relat
gxr5(t r21)/(tx21), Eq. ~8! now reads

sx~q!5gxrq1S, ~10!

with S512t r . Thus, we get that the interceptS of the
linear q-dependence of the moment exponentsx(q) is the
same for all distributions~site, area, duration, etc.! and is
therefore a characteristic quantity of the model. Consider
two models we get that different values ofS implies differ-
ent universality classes. But the same value of the interc

FIG. 2. The exponentss(q) ands r(q) of the two-dimensional
Manna model. The extrapolation to the horizontal axis yields
exponentsts51.286 andt r51.729, respectively. The slope corre
sponds to the scaling exponentsgsr andg rr where the latter equals
one ~see Table I!. The positions and sizes of the circles on t
horizontal axes correspond to the values and error bars of the
ponentsts51.27560.011 andt r51.74360.025, obtained from a
regression analysis@9#.
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S does not imply that both models belong to the same u
versality class. It is possible that the models display differ
values of gxr which results in different values oftx51
2S/gxr . Thus two different models belong to the same u
versality class if they are characterized by the same lin
dependence ofsx(q) for all relevant quantitiesx.

The determination of the interceptS for various distribu-
tions allows to estimate the accuracy of the moment analy
In the case of the Manna model we obtain from the mom
analysis of the size, area, duration and radius distribution
values Ss520.790060.002, Sa520.720260.003, S t5
20.768460.004, S r520.733360.005. The corresponding
values of the scaling exponentsgxr are listed in Table I. The
above error bars correspond to the uncertainty of the lin
regression@Eq. ~10!#. The average valueSManna,2D50.7530
60.037 agrees withS53/4 predicted in@9#. The latter error
bar reflects the uncertainty of the whole method and could
use as a lower bound for the error of the avalanche expo
Dt r>0.037. Typical error bars of a direct analysis of t
probability distributions areDt r&0.025.

III. MOMENT ANALYSIS OF THE BTW AND MANNA
MODEL

We now consider the moment analysis of the BTW a
Manna model for the size, area, duration, radius, and pe
eter distribution and compare the corresponding results
the case of the BTW model we analyze the probability d
tributions of lattice sizes up toL54096 for D52 and L
5256 for D53, respectively. Since the Manna model do
not display strong finite-size effects as the BTW model it
sufficient to consider system sizes only up toL52048 for
D52.

The moment analysis of the size distribution lead
Chessaet al. to the conclusion that both models are chara
terized by the same scaling behavior@12#. Therefore we first
consider the size distribution and the corresponding expon
ss(q) is shown in Fig. 3. In contrast to Chessaet al. who
found that both models display indistinguishable curves
q.1 we get slightly different curves. Plotting the derivativ
of the exponentsss(q) with respect toq the differences be-
come more significant~see inset of Fig. 3!. In the case of the
Manna model the derivative of the exponent satura
quickly with increasingq. Whereas the derivative]qss(q)
for the BTW model is characterized by a finite curvature, i.
the exponentgsr is not well defined in the case of the BTW
model. The duration probability distribution displays a sim

e

x-

TABLE I. Exponentsgxr for the BTW and Manna model. The
values are obtained from a linear regression according to Eq.~10!
and the errors are of the orderDgxr,0.01. The real error which
includes the uncertainty of the whole moment analysis is hard
estimate and increases this value significantly~see text!.

BTW, 2D Manna, 2D BTW, 3D Manna, 3D

gsr 2.764 3.004 3.302
gar 2.021 2.025 3.004 3.076
g tr 1.540 1.618 1.713
gpr 1.266 1.42@8#

g rr 1.008 1.006 0.995 1.010
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PRE 61 207MOMENT ANALYSIS OF THE PROBABILITY . . .
lar behavior as it can be seen in Fig. 4. Again the expon
s t(q) of the BTW model is characterized by a finite curv
ture.

The s exponents of the radius and area distribution
plotted for both models in Fig. 5. In the case of the BT
model the area and radius distributions display in contras
the size and duration distribution the usual behavior. Thq
dependence of the exponentssa(q) ands r(a) is given by a
linear function and the slopes correspond to the trivial val
gar52 ~compact avalanches! and g rr 51 ~see Table I!.
These exponents are the same for the Manna model an
corresponding curves are parallel. But as Fig. 5 shows th
is a clear shift between the curves of the BTW and Man
model, i.e., both models are characterized by two differ

FIG. 3. The exponentss(q) of the two-dimensional BTW and
Manna model. The curves differs slightly. The derivative of bo
curves is plotted in the inset and reveals that the exponentss(q) of
the BTW model is not well defined in the sense that no clear s
ration of the exponent can be seen forq.1.

FIG. 4. The exponents t(q) of the two-dimensional BTW and
Manna model. The derivative of both curves is plotted in the in
and reveals that the exponents t(q) of the BTW model displays the
same complicated behavior as the exponentss(q).
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avalanche exponentsta andt r .
The analysis of the perimeter distribution yields again

simple linearq dependence of the exponentssp(q) ~not
shown! and we obtaingpr51.26660.019 which corresponds
to the fractal dimension of the boundary. This value is
agreement with that obtained from a direct analysis of
scaling relationp;r gpr and differs significantly from the
value of the Manna modelgpr51.42 @8#.

Due to the nonlinear behavior of the size and durat
distribution we use the area, radius, and perimeter distr
tions in order to estimate the interceptS of the BTW model
and obtainSBTW ,2D50.39160.011. But one has to be care
fully to compare this result with the corresponding value
the Manna model. The performed moment analysis base
the assumption that the scaling behavior of the BTW mo
is given by a pure power-law behavior@Eq. ~4!#. But this
assumption is in contradiction to the observed logarithm
finite-size corrections@4,9# as well as to recently reporte
investigations where a multifractal behavior of the distrib
tion was observed@11#. In the latter case no avalanche exp
nent could be defined whereas the analysis of the logarith
finite-size corrections yieldSBTW ,2D'2/3 @9# which again
differs significantly from the corresponding value of th
Manna model.

These results lead us to the conclusion that the mom
analysis is applicable in order to determine the geome
properties of the avalanches of the BTW model, e.g.gar ,
gpr . The obtained results are in agreement with those
previous investigations which based on different methods
analyzing. But in contrast to the geometric properties
moment analysis of the dynamical properties~size and dura-
tion! of the avalanches exhibit a non-trivial behavior. Th
shows that the assumed simple power-law behavior is
fulfilled and that scaling corrections to Eq.~4! cannot be
neglected in these cases. The question whether these co
tions can be interpreted in terms of unconventional finite-s

u-

t

FIG. 5. The exponentsa(q) and s r(q) ~inset! of the two-
dimensional BTW and Manna model. One obtains for both mod
the same asymptotic slopes~see Table I! which agree withgar52
andg rr 51. But the extrapolation to the horizontal axis yields d
ferent values for the models indicating that the BTW and the Ma
model are characterized by different avalanche exponentsta and
t r , respectively.
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208 PRE 61S. LÜBECK
effects @4,9#, or correspond to a crossover effect from t
boundary to the bulk regime@7,10#, or indicate a multifractal
behavior of the two-dimensional model@11#, remains open.

In the following we briefly compare the three-dimension
BTW and Manna model and focus our attention on
analysis of the size and area probability distribution. In F
6 we plot the moment exponentsa(q) for both models. The
result is similar to the two-dimensional case~Fig. 5!. The
slopes of the curves agree with the valuegar53 indicating
that both models are characterized by compact avalan
~see Table I!. But the two curves are shifted which show
that the avalanche exponentsta of the BTW (ta51.352

FIG. 6. The exponentsa(q) of the three-dimensional BTW an
Manna model. One obtains for both models the same asymp
slopes~see Table I! which agree withgar53 ~compact avalanches!.
In the case of the BTW model both exponentsss(q) andsa(q) are
plotted, but no difference between the curves can be seen. The
shows the exponentsss(q) ~solid line! andsa(q) ~dotted line! for
the Manna model. The different slopes indicate that multiple t
pling events are relevant in the case of the Manna model (gsa

5gsr /gar.1).
.

hy
l
e
.

es

60.022) and Manna (ta51.43660.018) model are differen
for D53.

The determination of the interceptsS confirms this result.
Analyzing for both models the size, area, duration and rad
distribution we obtain SBTW ,3D51.01660.056 and
SManna ,3D51.33360.036. The intercepts differs signifi
cantly.

Finally we consider the area and size distribution for bo
models. As mentioned above the three-dimensional Ma
model behaves different than the BTW model in the se
that multiple toppling events affects the scaling behavior
cisively. This result can also be obtained from the mom
analysis. In the case of the BTW model no significant diffe
ence between the exponentssa(q) and ss(q) can be ob-
served ~see Fig. 6!. Whereas for the Manna model bot
curves are characterized by different slopes as can be se
the inset of Fig. 6. A regression analysis yieldgsr53.302
60.06 andgar53.07660.09, respectively. Thus multiple
toppling events affect the scaling behavior of the Man
model strongly (tsÞta), in contrast to the BTW model.

IV. SUMMARY

In summary we performed a moment analysis of seve
probability distributions of the BTW and Manna model fo
D52 andD53. We found that the corresponding mome
exponentssx(q) differ significantly for both models show
ing that the BTW and Manna model belong to different u
versality classes. Recently performed simulations of sand
models on a Sierpinski gasket display again the differ
scaling behavior of both models@31,32#. Our results confirm
the universality hypothesis of Ben-Hur and Biham where
scaling behavior of sandpile models is determined by
way in which the relaxing energy of critical sites is distri
uted to the neighboring sites@8#.
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