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ABSTRACT

Well-documented stratigraphy and clearly 
defi ned geodynamics in Taiwan, where some 
of the best records on arc-continent collision 
have been preserved, offer a unique example 
for the study of collision belts worldwide. 
The oblique arc-continent collision in Tai-
wan caused a simultaneous and sequential 
migration of four tectonic processes. Begin-
ning from 16 to 15 Ma, subduction of the 
South China Sea oceanic crust beneath the 
Philippine Sea plate resulted in volcanism 
in the Coastal Range and formation of an 
accretionary prism in the Central Range. 
Beginning in the latest Miocene–earliest 
Pliocene, the subduction was followed by ini-
tial arc-continent collision, as supported by 
the following: unroofi ng and erosion of the 
deformed accretionary prism, and deposi-
tion of sediments thus derived in the adja-
cent accretionary forearc (5 Ma) and slope 
basins (4 Ma); waning of volcanism (north, 
6–5 Ma; south, 3.3 Ma); buildup of fringing 
reefs on the gradually quiescent volcanoes 
(north, 5.2 Ma; south, 2.9 Ma); arc subsid-
ence by strike-slip faulting and the develop-
ment of pull-apart intra-arc basins (north, 
5.2–3.5 Ma; south, 2.9–1.8 Ma); thrusting 
of forearc sequences to generate a collision 
complex starting from 3 Ma; and clockwise 
rotation of the arc-forearc sequences (north, 
2.1–1.7 Ma; south, 1.4 Ma). The collision 
propagated southward and reached southern 
Taiwan by 5 Ma, as evidenced by the succes-
sive deformation of the associated accretion-
ary wedge en route. Afterward, the advanced 
arc-continent collision stage appeared in the 

earliest Pleistocene, as marked by the west-
ward thrusting and accretion of the Luzon 
arc-forearc against the accretionary wedge 
(north, 1.5 Ma; south, 1.1 Ma) and exhuma-
tion of the underthrust Eurasian continent 
rocks (north, 2.0–1.0 Ma; south, 1.0–0.5 Ma). 
The fi nal stage of the tectonic process, arc 
collapse-subduction, began by 1 Ma off the 
northern Coastal Range.

The geologic records compiled and pre-
sented in this study strongly support the 
scenario of a continuous southward migra-
tion of tectonic processes and a change in 
sediment source and structural style. Most 
importantly, the model has a broad poten-
tial for reconstructing and predicting the 
evolution of arc-continent collision through 
space and time.

Keywords: Taiwan, arc-continent collision, 
oblique collision, stratigraphic records, col-
lision suture.

INTRODUCTION

Tectonic processes associated with arc-conti-
nent collision can be recognized by the shifting 
of sediment provenance, deformation of arc-
forearc and accretionary wedge, abrupt change 
of sedimentation rate and depositional bathym-
etry in forearc or foreland basins, and the inten-
sity of arc volcanism (Teng, 1979; Charlton et 
al., 1991; Abbott et al., 1994; Huang et al., 1995; 
Yang et al., 1995; Brown and Spadea, 1999). 
Geochemical studies, such as fi ssion-track and 
argon-isotope dating, and pressure-tempera-
ture-time path analyses on the underthrust con-
tinental rocks in convergent zones, also can be 
used to reconstruct this exhumation history after 
subduction and subsequent collision (Berry and 

Grady, 1981; Liu, 1982; Liu et al., 2001; Lo and 
Yu, 1996; Wang et al., 1998; Hill and Raza, 1999; 
Ring et al., 1999; Harris et al., 2000; Willett et 
al., 2003). However, in many arc-continent col-
lision belts, multiple stages of metamorphism, 
overprinting deformation, complicated tecton-
ics, and inadequate age markers have obliterated 
or obscured most geologic records.

The geology of Taiwan is well known for its 
active and oblique collision between the Luzon 
Arc and the Eurasian continental margin (Fig. 1; 
Chai, 1972; Biq, 1973). The presence of an off-
shore modern analog further allows Taiwan to 
offer one of the clearest overviews of arc-conti-
nent collision (Huang et al., 1992, 2000).

Synthesizing new evidence and published 
data, we present temporal and spatial records 
that support a persistent southward propagation 
of the collision process, which in turn accounts 
for the sequential emergence and creation of 
Taiwan. Other recent interpretations of the tec-
tonic evolution of Taiwan are also compared 
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Figure 1. Tectonic framework and the four 
geodynamic processes involved in the arc-
continent collision in the Taiwan region. 
Refer to Huang et al. (2000) for details of 
tectonic processes and their geological-
geophysical characteristics. A and B are 
locations for fi ssion-track studies (Fig. 9) 
along the Central and Southern Cross-
Island Highways. TT—Taitung Trough; 
SLT—South Longitudinal Trough; CFS—
Chingshui fault scarp; arrow: magnetic dec-
lination. Compiled from Yang et al. (1983), 
Lee et al. (1991), Huang et al. (1992), Reed et 
al. (1992), Liu et al. (1998), Lallemand et al. 
(1997, 1999), Malavieille et al. (2002).
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and discussed, thus providing a comprehensive 
perspective on the time, space, and processes 
involved in this unparalleled collision terrain.

TECTONIC SETTING OF TAIWAN

Tectonics in the Taiwan region is character-
ized by two opposite subduction systems: The 
Eurasian continent–South China Sea oceanic 
crust (all on the Eurasian plate) subducts east-
ward beneath the Philippine Sea plate along the 
N-S-trending Manila Trench, whereas the Phil-
ippine Sea plate subducts northward beneath 
the Eurasian plate along the E-W-trending 
Ryukyu Trench (Fig. 1). Continuous subduc-
tion brought the Luzon Arc closer to the edge 
of the Eurasian continent and resulted in their 
collision in the late Neogene (Chai, 1972; Biq, 
1973). Because the Asian continental margin 
(trending N 60°E) is oblique to the N-oriented 
Luzon Arc, and the Philippine Sea plate moves 
toward 310°–305°, the arc-continent collision 
has been diagonal; hence the point of collision 
migrated southward (at the rate of 84 km/m.y.; 
Suppe, 1984).

Conversely, the northward subduction of the 
Philippine Sea plate has resulted in collapse of 
the North Luzon Arc off NE Taiwan beneath the 
Ryukyu Trench (Wang and Chiang, 1998; Lalle-
mand et al., 1999, 2001; Huang et al., 2000) and 
the backarc spreading of the Okinawa Trough 
behind the Ryukyu Arc.

Subduction and Collision Geology off 
Southern Taiwan

Off southern Taiwan, subduction of the 
South China Sea oceanic crust has resulted 
in the formation of an arc (North Luzon Arc), 
a forearc basin (North Luzon Trough), and 
an accretionary prism (Hengchun Ridge and 
Kaoping Slope; Fig. 1). The North Luzon 
Trough (forearc basin) narrows northward 
(Huang and Yin, 1990; Huang et al., 1992) at 
the expense of an expanding Huatung Ridge, 
which in turn has originated from multiple arc-
ward (eastward) back thrusting of the forearc 
sequence (Reed et al., 1992; Lundberg et al., 
1997; Malavieille et al., 2002).

Not only the offshore Luzon Arc and North 
Luzon Trough forearc basin connect north-
ward with the Coastal Range, but the Huatung 
Ridge also has its counterpart on land: the Lichi 
Mélange collision complex (Fig. 1; Hsu, 1956; 
Huang et al., 1992; Huang, 1993; Chang et al., 
2000). In addition, between the Hengchun Ridge 
and the North Luzon Trough, there lies a colli-
sion suture fault (i.e., the arc-prism boundary 
fault of Byrne, 1998, or the west-vergent thrusts 
with strike-slip components of Fuh et al., 1997, 

and Malavieille et al., 2002), which traverses 
the collisional suture basin (South Longitudinal 
Trough) and may correspond to the Longitudi-
nal Valley fault on land (Figs. 1 and 2).

Bounded on the west by the Manila Trench, 
the Hengchun Ridge and Kaoping Slope widen 
northward as more sediments on the Asian 
continental slope and South China Sea Basin 
are progressively incorporated into this accre-
tionary prism.

Tectonostratigraphy of Taiwan

Two major boundary faults are found in Tai-
wan (Fig. 1): The Lishan-Laonung fault, sepa-
rating the Hsuehshan Range–Western Foothills 
and the Central Range–Hengchun Peninsula, 
marks the subduction suture that prevailed 
before the arc-continent collision (8.5 Ma). To 
its east the Longitudinal Valley fault between 
the Central Range and the Coastal Range is the 
collision suture formed during the advanced 
stage of collision (<2 Ma). Genetically related 
to these sutures, the Kenting Mélange (situ-
ated along the frontal accretionary prism) in the 
Hengchun Peninsula, and the Lichi Mélange 
(situated along the collision suture) in the 
accreted Coastal Range, represent subduction 
and collision complex, respectively (Fig. 1).

Also divided by major faults, four tec-
tonostratigraphic units are recognized (Fig. 1): 
from west to east, the passive Asian continen-
tal margin fold-and-thrust belt, the accretionary 
prism, the underthrust Eurasian continent, and 
the accreted Luzon Arc-forearc.

The passive continental margin fold-and-thrust 
belt in the Coastal Plain, Western Foothills, and 
Hsuehshan Range is composed of Tertiary-Qua-
ternary neritic and foreland sediments. During 
the arc-continent collision, these shallow-marine 
sediments were folded and thrust. Their modern 
analog on the submarine Kaoping Slope is pres-
ently undergoing the same process.

The next two tectonostratigraphic units are 
found in the Central Range–Hengchun Pen-
insula (Fig. 1): the Miocene slates-turbidites 
and the pre-Miocene metamorphic rocks to the 
east. The pre-Miocene metamorphics consist 
of Eocene quartzite-limestone-slate resting 
unconformably on a Paleozoic-Mesozoic met-
amorphic basement (representing underthrust 
Eurasian continental rocks). On the other hand, 
the Miocene slate-turbidites are composed of 
deep-marine sediments (but later incorporated 
into the accretionary prism), which are now 
exposed in the western Central Range and in 
the Hengchun Peninsula (Figs. 1 and 3; Huang 
et al., 1997).

Lastly, the Coastal Range in eastern Taiwan 
represents the accreted Luzon Arc and forearc 

(Fig. 2) and consists of three extinct volca-
nic islands, three associated remnant forearc 
basins, two intra-arc basins, and a mélange 
sequence derived from the shearing of forearc 
sediments (Huang et al., 1995, 2000; Chang et 
al., 2000, 2001).

DATABASE

Diverse interpretations of the evolution of the 
arc-continent collision in the Taiwan region have 
been proposed. They were established either 
from limited fi eld data (e.g., paleomagnetism or 
radiometric dating; Wang, 1976; Liu, 1982; Liu 
et al., 2001; Teng, 1990; Lee et al., 1991; Lo and 
Yu, 1996; Wang et al., 1998; Huang et al., 1995, 
1997; Chang et al., 2001) or from marine survey 
and modeling without stratigraphic evidence 
(Lallemand et al., 1999; Chemenda et al., 2001; 
Malavieille et al., 2002). In contrast, based on 
the progressive change of geological and geo-
physical features within the modern active col-
lision zone between 20° and 25°N, Huang et 
al. (2000) recognized four tectonic processes 
(subduction, initial and advanced arc-continent 
collision, and arc collapse-subduction) in the 
Taiwan arc-continent collision. Their defi nition 
of the processes is followed in this study.

To support the pattern of tectonic evolution, 
in this paper we compiled four sets of published 
data: lithostratigraphy, biostratigraphy (plank-
tic foraminifer and calcareous nannoplankton), 
sedimentology, and 40Ar/39Ar and fi ssion-track 
dates of volcanic rocks. In addition, new fi ssion-
track ages of metamorphic rocks in the Central 
Range (Data Repository)1 and forearc sequences 
in the southern Coastal Range, and sediment 
point-count data for slope-basin sediments in 
the Hengchun Peninsula, are incorporated into 
this study for fi ne-tuning the details on the uplift 
rates and shifting of source rocks pertaining to 
various stages of the collision.

STRATIGRAPHIC RECORDS

Temporal and spatial events (a–m; Fig. 4) 
that recorded the arc-continent collision and 
a southward consecutive migration of the four 
tectonic processes are provided in the follow-
ing sections.

1GSA Data Repository item 2006042, two sup-
plementary fi gures showing sampling location and 
 fi ssion-track analysis results along two transverse sec-
tions over the exhumed metamorphic basement (the 
basement represents the underthrust Eurasian conti-
nent that was unroofed during the advanced arc-con-
tinent collision in the past 3 m.y.), is available on the 
Web at http://www.geosociety.org/pubs/ft2006.htm. 
Requests may also be sent to editing@geosociety.org.
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Intra-Oceanic Subduction

Event a—Onset of Luzon Arc Volcanism
Rifting of the Eurasian continent in the late 

Oligocene to middle Miocene (Taylor and 
Hayes, 1983) gave rise to the formation of the 
South China Sea oceanic crust, which then was 
subducted eastward beneath the Philippine Sea 
plate along the Manila Trench, resulting in vol-
canism in the Luzon Arc (Fig. 1). Reliable age 
dating of volcanics in the Coastal Range showed 
that the northern Luzon Arc eruption began at 
ca. 16–15 Ma (Fig. 2; Yang et al., 1988, 1995). 
Thus, subduction of the South China Sea oce-
anic crust started from middle Miocene (Table 1; 
Figs. 4A and 5A).

Event b—Termination of Sedimentation in 
the Accretionary Prism

During the subduction, deep-sea sediments 
on the South China Sea fl oor were incorporated 
into an accretionary wedge. Therefore, the age 
of the youngest deep-sea strata found in the 
accretionary prism specifi es the time when sub-
duction ceased.

North of 24°N, the exposed accretionary 
prism has been partially eroded, where the strata 
are dated as 16–15 Ma (N8-9; Chang, 1975), 
indicating that the subduction terminated there-
after (Table 1). To obtain a more precise date, the 
distance of 216 km (between 24°30′N represent-
ing the northern edge of the accretionary prism, 
and 22°30′N denoting the boundary joining the 
initial- and advanced-arc–continent collision) is 
divided by the southward oblique collision prop-
agation rate of 84 km/m.y. (Suppe, 1984), which 
gives approximately a duration of 2.5 m.y. Thus, 
in northern Taiwan the termination of subduc-
tion began around late Miocene (8.5 Ma = 2.5 + 
6). Here the 6 Ma (N10-N16/17, Chang, 1975; 
or NN11, Chi, 1982) is the age of the youngest 
continent-derived deep-marine turbidites found 
on the Hengchun Peninsula (accretionary prism) 
in southern Taiwan (Fig. 3). The 6 Ma in turn 
represents the time when subduction stopped in 
southern Taiwan (22°–22°30′N; Table 1).

Initial Arc-Continent Collision (Events c–j)

Off southern Taiwan (Fig. 1), the initial 
arc-continent collision (between 21°20′ and 
22°40′ N) is characterized by closure of the 
forearc basin, eastward back thrusting of 
forearc sediments, development of a collision 
suture–fault system, exposure of the accretion-
ary prism, and tapering off of volcanic activ-
ity (Huang et al., 2000). Not only are these 
features detectable on land, but also other 
evidence of the initial arc-continent collision 
is preserved. Events c–h (Figs. 4 and 5) and 
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i–j (Fig. 7), which occurred separately east 
(Coastal Range) and west (Central Range–
Hengchun Peninsula) of the collision suture, 
are presented in subsequent sections.

Event c—Sequential Waning of Luzon Arc 
Volcanism in the Coastal Range

Geochemical and stratigraphic data show 
that three volcanic islands (from north to south, 
Yuehmei, Chimei, and Chengkuangao; Fig. 2) 
in the Coastal Range were accreted to eastern 

Taiwan (Lo, 1989; Chen et al., 1990; Huang et 
al., 1995). The top of the Tuluanshan Forma-
tion (andesitic breccia, agglomerate, and tuff) 
of the Chimei volcanic island (Fig. 2) in the 
north was dated NN11 (<8–5 Ma; Chi et al., 
1981) and 6–5 Ma (40Ar/39Ar; Lo et al., 1994). 
In comparison, the top of the same formation in 
the south (Chengkuangao volcanic island) was 
dated 5.6 Ma (40Ar/39Ar) and 3.3 Ma (fi ssion 
track) (Fig. 2; Yang et al., 1988; Lo et al., 1994). 
Because the arc-continent collision caused the 

cessation of volcanism, the last volcanic activity 
represents the transition from subduction to col-
lision (Figs. 4B and 5B).

In the present collision zone, volcanism in 
the offshore Lutao and Lanhsu Islands ended at 
1.5 Ma and 0.5–0.04 Ma (Yang et al., 1988; Lo 
et al., 1994), respectively (Fig. 2). Thus, both 
the microfossil and radiometric ages indicate 
that the initial arc-continent collision began at 
ca. 6–5 Ma in the north and propagated south-
ward (Table 1).
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Event d—Development of Fringing Reefs 
atop Inactive Volcanic Islands

Off SE Taiwan in the present initial arc-con-
tinent collision zone, modern fringing reefs 
have built up on the Lanhsu and Lutao volca-
nic islands since their volcanism terminated. 
Therefore, the age of the oldest fringing-reef 
limestones atop volcanic islands can be used 
indirectly to infer the cessation of volcanism, 
which in turn indicates the time of transition 
from subduction to initial arc-continent colli-
sion (Figs. 4B and 5C).

Two reef-limestone sequences were recog-
nized on the reconstructed volcanic islands in 
the Coastal Range (Huang et al., 1988; Huang 
and Yuan, 1994; Yuan, 1994; Huang et al., 
1995): the Kangkou Limestone (5.2 Ma) on 
Chimei volcanic island in the north and the 
Tungho Limestone (2.9 Ma) on Chengkuangao 
volcanic island in the south (Figs. 2, 5E and F). 
As expected, these limestone ages are slightly 
younger than those of the last volcanic events 
(see event c, discussed previously).

The age relationships therefore indicate that 
the initial collision began at ca. 5.2 Ma in the 
north, 2.9 Ma in the south, and between <0.5 Ma 
and the present off SE Taiwan (Table 1).

Event e—Appearance of Prism-Derived 
Quartzose Sediments in the Forearc Basin

During subduction, the bulging Hengchun 
Ridge accretionary prism acted as a barrier that 
obstructed the Asian continent–derived quartz-
rich sediments from entering the forearc North 
Luzon Trough. However, once the accretionary 
prism was uplifted and exposed to erosion, its 
sediments began to appear in the forearc basin. 
Because the elevation and uncovering of the 
accretionary prism is one of the major features 
of initial arc-continent collision (Huang et al., 
2000), the fi rst deposition of prism-derived 
quartzose turbidites in the forearc would denote 
an early phase of initial arc-continent collision.

Fission-track dating from the forearc sequence 
(Fig. 6) shows a young zircon age (<6 Ma), indi-
cating that these sediments were derived from 
the tectonized and later exposed accretionary 
wedge (as shown by partial resetting of zircon 
grains) instead of directly from the Asian conti-
nent, where the last tectonism ceased at 65 Ma 
during the Yenshan movement (Chen et al., 
2003). This new fi ssion-track dating from the 
forearc sequences in the southern Coastal Range 
is consistent with the reported results from the 
northern Coastal Range (Liu et al., 2000).

The fi rst appearance of such nonvolcanic, 
quartz-rich turbidites in the Coastal Range 
forearc basins was dated as NN13/14 (4.5–
3.7 Ma; Chi et al., 1981). The forearc stratigra-
phy therefore suggests that the initial arc-conti-

nent collision began in the early Pliocene at ca. 
5 Ma—e.g., 1 m.y. after subduction of the South 
China Sea oceanic lithosphere ceased at 6 Ma 
(events a and b; Table 1).

Event f—Arc Subsidence and Formation of 
Intra-Arc Basins

Submarine intra-arc basins were identifi ed 
on both the Lutao and Lanhsu volcanic islands 
in the present-day initial arc-continent colli-
sion zone (Huang et al., 1995; Malavieille et 
al., 2002). It was proposed that the basin origi-
nated from strike-slip faulting within the arc, 
which in turn was caused by the oblique colli-

sion between the Luzon Arc and the underthrust 
Eurasian continent (Fig. 4C).

In the eastern part of the Coastal Range, 
fringing-reef limestones (event d) are overlain 
by deep-marine turbidites (Figs. 5E and F), 
indicating rapid arc subsidence during the late 
phase of initial arc-continent collision (Fig. 5D). 
Further, the limestone sequences lie at the bot-
tom of two reconstructed intra-arc basins (each 
10 km wide by 40 km long): the Chingpu intra-
arc basin on the Chimei volcanic island in the 
north, and the Chengkung intra-arc basin on 
the Chengkuangao volcanic island in the south 
(Fig. 2). Bio- and magnetostratigraphic data 

TABLE 1. SUMMARY OF THE SPATIAL-TEMPORAL RECORDS OF THE TAIWAN ARC-CONTINENT 
COLLISION

Intra-oceanic 
subduction

Initial arc-
continent collision

Advanced arc- 
continent collision

Arc collapse- 
subduction

West of collision suture

(a) Stratigraphy in accretionary prism 16–15 Ma (N)
6 Ma (S)

East of collision suture

(b) Onset of volcanism 16–15 Ma

East of collision suture

(c) Last volcanism 6–5 Ma (N)
3.3 Ma (S)

1.5–0.02 Ma 
(offshore)

(d) Development of fringing reef around 
nonactive volcanic island

5.2 Ma (N)
2.9 Ma (S)
<0.5 Ma–

present (offshore)

(e) Deposition in forearc basin 5 Ma

(f) Arc subsidence and formation of intra-arc 
basin

5.2–3.5 Ma (N)
2.9–1.8 Ma (S)

Present (offshore)

(g) Deformation of western forearc basin 
(formation of mélange)

3 Ma (S)
Present (offshore)

(h) Clockwise rotation of forearc basin 2 Ma (N)
1 Ma (S)

Present (offshore)

West of collision suture

(i) Deposition in accretionary slope basin 4 Ma
Present (offshore)

(j) Deformation of accretionary slope basin <1 Ma–present

East of collision suture

(k) Westward thrusting of forearc and intra-
arc basins

1.5 Ma (N)
1.1 Ma (S)

West of collision suture

(l) Exhumation of underthrust continent 1.0 Ma (N)
0.5 Ma (S)

East of collision suture

(m) Collapse of accreted Luzon Arc-forearc <1 Ma–
present

Note: Lowercase italic letters in parentheses refer to spatial-temporal events as described in text. N—north; 
S—south.
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Figure 5. Stratigraphic sequence recording the (A) active volcanism (event a) during intra-oceanic subduction, (B) waning of volcanism 
(event c), (C) sedimentation of forearc basin (event e) and development of fringing reef (event d), (D) arc subsidence (event f) and infi lling 
of intra-arc basin with deep-marine fl ysch overlying shallow-marine fringing limestone in (E) Chingpu intra-arc basin and (F) Chengkung 
intra-arc basin during initial arc-continent collision, to fi nally (G) westward-landward thrusting and accreting of the arc-forearc onto 
the exposed underthrust Eurasian continent (eastern Central Range) (event k) along the collision suture of Longitudinal Valley during 
advanced arc-continent collision. Modifi ed from Huang et al. (1995). N—north; S—south.
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show that the basal Chingpu and Chengkung 
intra-arc basin sediments are 3.5 Ma and 1.8 Ma 
(Huang et al., 1995; Horng and Shea, 1996), 
respectively (Figs. 5E and F). Thus, the period 
between the reef-limestone deposition and the 
overlying deep-marine turbidite sedimentation 
(5.2–3.5 Ma in the north and 2.9–1.8 Ma in the 
south) indicates the interval of intra-arc basin 
formation and arc subsidence (Figs. 4C and 
5D) during the initial arc-continent collision 
(Table 1).

Event g—Deformation of Forearc Basin and 
Formation of a Collision Complex: The Lichi 
Mélange

As described previously for the modern ini-
tial arc-continent collision zone, the forearc 
sequence in the North Luzon Trough was back 
thrust eastward, creating the Huatung Ridge 
(Fig. 4C). As a result, the North Luzon Trough 
(forearc) tapers off northward and fi nally closes 
at its northern terminus (Fig. 1). In addition, the 
submarine Huatung Ridge connects northward 
with the Lichi Mélange in the southern Coastal 
Range (Figs. 1 and 4C and D).

The Lichi Mélange lies west of the remnant 
forearc basin strata (Loho Basin and Taiyuan 
Basin; Fig. 2). A comparable geographical 
relationship is found offshore where the Hua-
tung Ridge also lies west of the Luzon Trough 
forearc basin (Figs. 1 and 2). Moreover, simi-
larity of the Lichi Mélange and the submarine 
Huatung Ridge in their lithology, clay mineral 
compositions, and tectonic setting (Huang et 
al., 1992; Huang, 1993) prompted Huang et al. 
(2000) and Chang et al. (2000) to suggest that 
the Huatung Ridge is the precursor of the Lichi 
Mélange. Therefore, the age of the youngest 
deformed sediments in the Lichi Mélange and 
the offshore Huatung Ridge can be used to infer 
the inception of initial collision when the forearc 
sequence began to be deformed (Fig. 4C).

The Lichi Mélange in the southern Coastal 
Range gave a consistent age of 3.7–3.5 Ma 
(NN15; Chi et al., 1981; Chi, 1982; Barrier and 
Müller, 1984) or late N19 (Chang, 1975), almost 
identical to that of the samples (3.5–2.9 Ma) 
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dredged from the submarine Huatung Ridge 
(Huang et al., 1992; Huang, 1993). This sug-
gests that the initial arc-continent collision in 
the southern Coastal Range (23° N) occurred at 
ca. 3 Ma (Table 1).

Event h—Clockwise Rotation of the Forearc 
and Arc

During the late phase of initial arc-continent 
collision, not only were the arc and forearc 
sequences back thrust, but they were also rotated 
(Fig. 4D). For example, in the modern initial 
collision zone off SE Taiwan, the Lutao volcanic 
island has already been rotated 14° clockwise, 
although the Lanhsu volcanic island in the south 
has held its current declination of 346° (Yang et 
al., 1983; Fig. 1).

Similarly, magneto- and biostratigraphic stud-
ies enabled Lee et al. (1991) to demonstrate that 
the forearc sequences in the Shuilien remnant 
forearc basin began to rotate clockwise at 2.1–
1.7 Ma in the north, and at 1.4 Ma in the south 
(Taiyuan remnant forearc basin). These ages 
registered the last phase of initial arc-continent 
collision (Table 1) before they were ultimately 
thrust westward to form the Coastal Range dur-
ing the succeeding advanced collision.

Event i—Deposition of Slope-Basin 
Sequences on the Deformed Accretionary 
Wedge in the Hengchun Peninsula

At the intra-oceanic subduction stage, the 
accretionary prism widened and thickened 
owing to sediment deformation and offscrap-
ing (Figs. 4A–C). Further, as the northern prism 
proceeded into the initial arc-continent collision 
stage, it was uplifted and became the emergent 
Central Range–Hengchun Peninsula (Fig. 1). It 
is conceivable that sediments derived from this 
exposed prism were transported and deposited in 
the accretionary slope basins that developed on 
the deformed accretionary prism (Figs. 7A and 
B; Lundberg et al., 1997). Therefore, the forma-
tion of the accretionary slope basin is another 
useful parameter that signifi es the inception of 
initial arc-continent collision.

On the southern Hengchun Peninsula, the 
Plio-Pleistocene shallow-marine slope-basin 
sequence (Maanshan Formation and overly-
ing reef-lagoon complex; Fig. 3) unconform-
ably overlies the deformed deep-marine Mio-
cene turbidites of the accretionary prism. The 
Maanshan Formation contains rounded gabbro 
pebbles and reworked Miocene deep-marine 
foraminifers (Fig. 7B). In addition, point count 
results show that the Maanshan Formation is 
comparable in composition to the Miocene tur-
bidite (Fig. 8; Sung and Wang, 1985), indicating 
that the former was derived from the exposed 
Miocene turbidites of the accretionary wedge. 

The base of the Maanshan Formation is N19 or 
NN15 (3.7–3.5 Ma; Cheng and Huang, 1975; 
Chi, 1982); therefore, it is suggested that the ini-
tial arc-continent collision could have begun at 
4 Ma in southern Taiwan (Table 1).

Event j—Deformation of the Slope-Basin 
Sequence

The Maanshan Formation (3.7–1 Ma; Fig. 3), 
which was deposited in the accretionary slope 
basin, was faulted and then unconformably over-
lain by the latest Pleistocene (<0.5 Ma) barrier 
reef–lagoon complex (Figs. 3 and 7C). Both 
sequences then were tilted eastward (West Heng-
chun Hill in Fig. 3; Cheng and Huang, 1975; 
Huang, 1988), indicating that the whole slope 
basin was deformed and uplifted since 1 Ma 
(Figs. 7C and D) during the initial arc-continent 
collision in southernmost Taiwan (Table 1).

Advanced Arc-Continent Collision 
(Events k–l)

The advanced arc-continent collision is char-
acterized by the westward thrusting and accre-
tion of the Luzon Arc-forearc onto the Asian 
continent and the exhumation of metamorphic 
basement, which now crops out in the eastern 
Central Range.

Event k—Westward Thrusting and Accretion 
of the Arc and Forearc

As the arc-continent collision propagated 
southward, the northern part of the arcs and 
forearc basins were thrust westward, forming 
the Coastal Range in eastern Taiwan (Figs. 4D 
and 5G). Thus, the age of the youngest strata in 
the forearc and intra-arc basins marks the onset 
of the advanced arc-continent collision.

Bio- and magnetostratigraphic studies (Chang, 
1975; Chi et al., 1981; Lee et al., 1991) gave 
an age of 1.5 Ma for the youngest strata in the 
Shuilien forearc basin and the Chingpu intra-arc 
basin in the north, and an age of 1.3–1.1 Ma for 
the youngest strata in the Taiyuan forearc basin 
and the Chengkung intra-arc basin in the south 
(Chang, 1975; Chi et al., 1981; Horng and Shea, 
1997). This indicates that the Coastal Range 
was accreted and uplifted at 1.5 Ma in the north 
and 1.1 Ma in the south (Table 1).

Event l—Exhumation of Underthrust 
Eurasian Continent in the Eastern Central 
Range

In the Hengchun Peninsula (southern Central 
Range between 21°50′ and 22°30′N) within the 
initial arc-continent collision zone, Miocene 
slates and turbidites of the accretionary prism are 
exposed (Fig. 3). In contrast, north of 22°30′N 
the Paleozoic-Eocene metamorphic basement 

of the underthrust Eurasian continent crops out, 
almost coinciding in location with the southern 
tip of the Coastal Range (22°40′N; Fig. 1).

Fission-track dating of zircon, apatite, and 
sphene grains showed that the Eurasian conti-
nental basement was unroofed slowly before 
5 Ma but more rapidly afterward, increasing 
from 3 mm/yr at 3–2.5 Ma to 9–10 mm/yr in 
the past 1.5 m.y. (Liu, 1982). In addition, fi s-
sion-track analyses from two traverses indicate 
that schist in the northern Central Range (Profi le 
A in Fig. 1) was unroofed during 2.5–1.0 Ma 
(mostly between 2.0 and 1.0 Ma), followed by 
 unroofi ng in the south (Profi le B in Fig. 1) dur-
ing ca. 2.0–0.5 Ma (largely 1.0–0.5 Ma; Fig. 9; 
Tsao, 1996). These data are consistent with a 
previous study (Liu et al., 2001), suggesting 
that the advanced arc-continent collision also 
migrated southward (Table 1).

Arc Collapse and Subduction

Event m—Collapse of Accreted Luzon Arc-
Forearc

It is proposed that arc collapse occurred when 
the northernmost Coastal Range (accreted Luzon 
Arc) subducted northward beneath the Eurasian 
continent along the Ryukyu Trench (Fig. 4E; 
Lallemand et al., 1997). Extending from the 
Longitudinal Valley fault, the Chingshui fault 
scarp off NE Taiwan (CFS in Fig. 1) is believed 
to mark the collapsed trace of the Luzon Arc-
forearc north of Hualien (Fig. 4E; Huang et al., 
2000). Presumably, the small Yuehmei volcanic 
body in the northernmost Coastal Range (Fig. 2) 
represents the relic of the collapsed Luzon Arc 
as it approached the Ryukyu Trench.

The timing of arc collapse and subduction 
can be inferred to postdate the thrusting and 
accretion of the youngest strata in the Shuilien 
forearc basin (northern Coastal Range; 1.5 Ma; 
event k, discussed previously), probably having 
occurred within the past 1 m.y. (Table 1).

DISCUSSION

Collision Age Controversy

There is a general consensus that an oblique 
arc-continent collision has taken place in Tai-
wan since the Plio-Pleistocene, which is known 
as the Penglai orogeny. Also, a wide spectrum 
of “collision” ages ranging from 12 to 2 Ma in 
stratigraphic records has been proposed. These 
various dates in the following discussion, how-
ever, probably register different stages of the 
tectonics described in this article.

Teng (1990) suggested that the collision started 
at 12 Ma ~160 km east of Taiwan in the southern 
Okinawa Trough. However, his “ collision” refers 
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to the encroachment of the Luzon Arc upon the 
Asian continental rise and slope while subduc-
tion was still in progress. Therefore, Teng’s onset 
of collision at 12 Ma, which postdates the earliest 
volcanism (16–15 Ma) and predates the waning 
of Luzon Arc volcanism (6 Ma), corresponds to 
the intra-oceanic subduction as defi ned in Huang 
et al. (2000).

A thermal event at 11 Ma, determined 
by 40Ar/39Ar methods on phengites from the 
exhumed late Mesozoic glaucophane schist in 
the eastern Central Range, was used to infer the 
collision age for the Penglai orogeny (Lo and 
Yu, 1996). They pointed out that the thermal 
overprinting temperatures (300–450 °C) of the 
samples are near the closure temperature for 
phengite (~400 °C). Thus this thermal event 
could have resulted either from crystallization 
during cooling or resetting of isotopes by ther-
mal overprinting. However, because this 11 Ma 
thermal event occurred during the time of active 
subduction (16–8.5 Ma) and is older than the 
earliest initial collision (8.5 Ma; Table 1) and 
the exhumation of the underthrust Eurasian con-
tinent (2 Ma) discussed previously, most likely 
it represents heating when Mesozoic metamor-
phic rocks of the Eurasian continent–South 
China Sea oceanic crust subducted beneath 
the Philippine Sea plate rather than the cool-
ing effect during exhumation of the underthrust 
continent in an advanced stage of collision. In 

addition, if 11 Ma is indeed the collision age, 
as Lo and Yu (1996) proposed, it deviates from 
another 40Ar/39Ar age (of biotites in a mylonite 
zone within gneiss) in the eastern Central 
Range. The later study showed that mylonitiza-
tion occurred at 4.1–3.3 Ma (Wang et al., 1998) 
when the underthrust basement underwent 
intensive deformation. The mylonitization of 
the gneiss agrees with the proposed initial arc-
continent collision tectonics (<8.5 Ma; Table 1) 
that caused not only deformation in the accre-
tionary prism, but also the underthrust Eurasian 
continent beneath the prism.

Wang (1976) proposed that a 9 Ma horizon, 
situated between the land- (prism-) derived tur-
bidites (with slate chips) and the underlying vol-
caniclastics in the Coastal Range, could represent 
the time of arc-continent collision. However, 
both in the Coastal Range and the modern sub-
duction-collision region off southeast Taiwan, the 
prism-derived turbidites are found only uncon-
formably overlying the volcanic basement but 
nowhere atop the arc (Huang et al., 1992; Reed 
et al., 1992; Malavieille et al., 2002). Moreover, 
in the Coastal Range the lowermost zone of the 
prism-derived turbidites that contain slate chips is 
3 Ma (Chi et al., 1981) instead of 9 Ma (an error 
resulting from a misunderstanding of fossil ages 
as defi ned by Chang, 1975). The revised age is 
much younger than the last volcanism (6 Ma) in 
the northern Coastal Range.

On the other hand, Liu (1982) noticed an 
abrupt increase of uplift rate in the northern Cen-
tral Range metamorphic basement since 3 Ma, 
which was thus marked as the time of collision. 
However, the present study points out that in the 
eastern Central Range rapid uplift took place at 
2.0–1.0 Ma (in the north) and 1.0–0.5 Ma (in 
the south) during the advanced collision stage. 
Therefore, Liu’s collision age (3 Ma) could rep-
resent the transition from the initial to advanced 
stages of arc-continent collision.

Other arguments as to collision age were 
based on sedimentological studies. For example, 
a sharp increase in forearc sedimentation rate at 
3 Ma was regarded as the result of drastic colli-
sion (Teng, 1990) or incipient collision (Dorsey, 
1988). But, as discussed for event d, the forearc 
sequences were primarily derived from erosion 
of the accretionary prism to the west. There-
fore, following the defi nition and processes of 
arc-continent collision (Huang et al., 2000), this 
sharp increase of sedimentation rate and change 
of sediment provenance at 3 Ma would register 
the transition from the late phase of initial arc-
continent collision to early advanced arc-conti-
nent collision, when the accretionary prism and 
the underthrust metamorphic basement were 
rapidly exhumed.

CONCLUSIONS

Owing to well-understood biostratigraphy 
and tectonostratigraphy, and to the presence of 
comparatively simple offshore analogs, Taiwan 
is the most precisely documented example in the 
world of the spatial and temporal evolution of 
an oblique arc-continent collision. Four tectonic 
processes are involved in the active Taiwan arc-
continent collision. Stratigraphic records are 
best available for both sides of the collision 
suture, Longitudinal Valley, and each collision 
process in the north predates that in the south.

The Taiwan arc-continent collision (Fig. 4) 
started from eastward intra-oceanic subduction 
of the South China Sea oceanic crust beneath the 
Philippine Sea plate and formation of the Luzon 
Arc and the accretionary wedge in the middle-
late Miocene in the north (western Central 
Range) and the late Miocene in the south (6 Ma) 
in the south (Hengchun Peninsula), whereas the 
subduction terminated at 8.5 Ma in the north and 
6 Ma in the south. The subsequent initial arc-con-
tinent collision began in the early Pliocene, when 
Eurasian continent crust entered the Manila sub-
duction zone. The initial arc-continent collision 
is manifested by multiple stratigraphic records: 
waning of volcanism in the North Luzon Arc 
(north, 6–5 Ma; south, 3.3 Ma); deposition of 
forearc basin sequences (5 Ma); development 
of fringing reefs on nonactive volcanic islands 
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(north, 5.2 Ma; south, 2.9 Ma); arc subsidence 
and formation of intra-arc basins (north, 5.2–
3.5 Ma; south, 2.9–1.8 Ma); and clockwise rota-
tion of forearc basins (north, 2.1–1.7 Ma; south, 
1.4 Ma) east of the collision suture, and depo-
sition in the accretionary slope basin (4 Ma) as 
well as deformation of accretionary slope-basin 
sequences (<1 Ma–present) west of the collision 
suture. Finally, westward accretion of the Luzon 
Arc-forearc (north, 1.5 Ma; south, 1.1 Ma) 
against the exhumed and uplifted underthrust 
metamorphic basement (north, 2–1 Ma; south, 
1.0–0.5 Ma) records the advanced arc-continent 
collision tectonics. The most advanced tectonic 
process, arc collapse-subduction, has occurred 
only in 24°–24°3.0′N off the northern Coastal 
Range during the past 1 m.y.
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