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At small Reynolds numbers, the discharge @ of a fluid through a straight circular tube of
length [ is given by
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where AP is the pressure difference across the tube, and p is the fluid density. For a tube

conta.ining bubbles, the discharge becomes

gl [AP- % APb(Q)] , (7)

T =
where I* is the length of the tube minus the lengths of the bubbles in it, and APB,(Q) is the
pressure drop across one bubble, given by (3). Note that AR, depends on Ca. Ca, in turn,
depends on the average speed of the bubble in the tube. The speed of the bubbles u is related
by
v=(1-w) -u (8)

to the average speed of the suspending (wetting) fluid v, which is given by
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AP, depends thus on Q, and so does w. Substituting (8) and (9) into (1) yields
w(l —w)?P =1 : (10)
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In the low Reynolds number limit the flow in each fluid domain satisfies the Stokes
and continuity equations

V- T=uVu—Vp+pg=0 and V-u=0, . 2.1)

where u is the fluid velocity, p is the fluid pressure, T is the stress tensor defined to
incorporate the body force pg, ie. T = —pi + w[Vu + (Vu)"] + pg - xI, and p is the
fluid viscosity. As the stress tensor T is defined to be divergence free, the body force
thus appears in the boundary conditions, equations (2.4) and (2.5) below. We denote

the fluid domains by subscripts 1 and 2 for drops 1 and 2, respectively, and by the
subscript ext for the external fluid.

We require that the velocity decays to zero far from the drops,
py — 0 as |x| > 0 ) (2.2)
and that the velocity is continuous across all interfaces,
Uy =H, onS; and wuw; =u,, on Sy, (2.3)

where S; is the surface bounding drop 1, and S;, is the surface bounding drop 2.
The stress jump [ - T] across an interface is balanced by the density contrast and
interfacial tension forces, which depend on the local curvature V. - n of the interface:

1 [»Tl=nT, . —nT =0c(V, mn+ndp(g-x) ons,, (2.4)
. [[n-T”]]:n-T”—n‘Tg"zor(Vs-n)n-{—nAp(g-x) SS (2.5)
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The velocity field created by a translating drop, described by equations (2.2) and
(2.3), creates velocity gradients which deform nearby drops. Let ¢; measure the small
distortion away from a spherical shape, and let‘% = ,@_,gg% be the Bond number
for drop i. The far-field velocity gradient generated by drop 1 in the vicinity of drop
2 is O(Uya;/d?). A balance of viscous stresses, O(uU,ay/d*), by the interfacial tension
stresses of drop 2, O(e;0/a;), which tend to keep the drop nearly spherical, leads to
a small shape distortion of drop 2 with magnitude
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A similar analysis for drop 1 gives
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Since the magnitude of deformation is O(%a?/d?), it follows that the correction to
the rise speed is O(U%%a?/d?), where U is the Hadamard-Rybczynski rise speed.
Also, the relative magnitude of distortion of the two drops is

§L = (2)2 (2.8)
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Thus, (surprisingly) the smaller drop will be more deformed than the larger drop, as
seen in the experiments shown in figure 1.
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boundary value problem assumes the form (see Appendix C)

2(2)
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g 0, V29 =0, (5.18)
u? —i1® = A(n,, f) on r=1, (5.19)
U,
2 . = i S —
u® - n, = B(n, f) + > on r=1, (5.20)
T e onc=1L (5.21)

where “ denotes variables inside the drop. The dimensionless functions 4, B and C
are derived in Appendix C, and depend on the detailed drop shape f(6, ¢).

We can then use the Reciprocal theorem (equation (C35) in Appendix C) to obtain
the second-order velocity correction

vo

TR =
4n(2 + 32)
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+3(2 + 32)B(m,, f)n,} dS, _ (5.22)

where S denotes a spherical drop surface. Evaluating the integrals we find

UP = (~1)eWUL -d (e.-d) [e. 3. - dd], (5.23)
where e, is a unit vector in the vertical direction and
e 22
o) = (16 +192)(8 — A +3 )‘ (5.24)

240(1 + 122 + 34)

Note that ¢ = 4/15 for a bubble, ¢ = 19/240 for a rigid particle, and ¢ has a
minimum value for A &~ 2.64. The function c(4) is plotted in figure 20. The condition
that the horizontal segaration between the drops decreases (see equation (5.17)) is
given by B(a3/a,d) U - e, — B(aray/d>) UL - e, + AUy < 0, ig’
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5.4. Translational velocity from the Reciprocal theorem

The above analysis suggests a small O(%a?/d?) correction to the local description of
the flow field owing to the drop’s deformation. Since a/d and & are independent
parameters we seek the next-order correction to the velocity field, #(a/d)*u®(r),
satisfying the Stokes equations both inside and outside the drop. This analysis
corresponds to the translation of an isolated slightly deformed drop in an otherwise

quiescent fluid. Thus, we seek solutions for the approximate translational velocity in
the form

: 2 3
Ua/d,B) = U + (3’) Uo 4+ 3 (S-) U@ 40 (U‘“’j—s) ; (5.17)

Provided # > O(d/a) the dominant correction to the migration velocity arises from
the third term on the right-hand side. Furthermore, so long as # > O(a/d), shape
modifications are at least as important as the O(a/d)* corrections calculated using
the method of reflections for spherical drops.
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Substitution of (5.10) into (5.7) yields;

I mx'k o "yx'k Y (an )b

i

K, =
: (Am)’ (5.11)

There is one mass action equation such as (5.11) for
each currently saturated pure mineral or solid solution
end member. Recall that for pure minerals, equation
(5.11) reduces to equation (5.7), with the @ in the
denominator of (5.7) set to unity.

The,mass action equation for gas species gin a mixed
H ?nithnyg“‘
K, =
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Je (5.12)
“in which Je'is the fugacity of gas species & and Q, is the
= product in the numerator of the equation, defined here

for use below. The fugacity £, in equation (5.12) can be
expressed:

i = ¢, P,/ Zn, (5.13)

in which ¢, is the fugacity coefficient for gas species g, n,
is the number of moles of species g in the gas phase, Pis
fluid pressure, and the summation in the denominator is



