Universality in BTW and Manna Sandpile Models

Speaker: Chuang Ya-ting

2012/11/01

Reference

- Asa Ben-Hur and Ofer Biham, 1996. Universality in sandpile models. Physical Review E 53, R1317–R1320.
- S. Lübeck, 2000. Moment analysis of the probability distribution of different sandpile models. Physical Review E 61, R204-R209.

Outline

- Introduction
- Sandpile Model Manna model
- Parameter
- Method and Discussion S. Lübeck
- Conclusion

Introduction

Model : BTW model and Manna model

- Purpose :Whether the BTW and the Manna model belong to different universality classes
- Universality classes : Under the proper conditions, different systems can exhibit the same behavior, as measured by quantitative indices, if they meet the same qualitative criteria.

Sandpile Model

 BTW model threshold : 4 grains

D

Sandpile Model

 Manna model threshold : 2 grains

Þ

One perturbes the system by adding particles at a randomly chosen site r according to

 $E_{\mathbf{r}} \mapsto E_{\mathbf{r}} + 1$, with random r.

An unstable site relaxes, its value is decreased by E_c and the two-dimensional nearest neighboring sites are increased by one unit,

$E \longrightarrow E + 1$	•	
$L_{nn,r}$ $L_{nn,r}$ 1		

$$E_{\mathbf{r}} \rightarrow E_{\mathbf{r}} - E_{\mathbf{c}},$$

Parameter

 The avalanches are characterized by several physical properties : the size s (number of relaxation events)

the area a (number of distinct toppled sites)

the **radius r** (radius of gyration)

the **perimeter p** (number of boundary sites)

- the **time t** (number of parallel updates until the configuration is stable), etc.
- the **maximum distance d** (between the origin of the avalanche to sites of the avalanche cluster)

the sandpile system size L

Method - Ben-Hur et al.

The avalanche variables have probability functions which are assumed to fall off with a power law defined by

$$P(x) \sim x^{1-\gamma_x} , x \in \{s, a, r, d, t, p\}$$

- These variables also scale against each other in the form $y \sim x^{\gamma_{yx}}$ for $x, y \in \{s, a, r, d, t, p\}$
- The exact definition of the γ 's is in terms of conditional expectations values:

$$E[y|x] \sim x^{\gamma_{yx}}$$

Exponent	Model		
	BTW	Manna	
$1/z^{a}$	0.76	0.67	
γ_{st}	1.62	1.70	
γ_{at}	1.53	1.35	
γ_{sa}	1.06	1.23	
$D_f \rightarrow \gamma_{\rm pr}$	1.26	1.42	

On the basis of the difference in the γ 's for the BTW model and Manna models we conclude that the two models are not in the same universality class.

Method - S. Lübeck

Power low behavior

 $P_{x}(x) \sim x^{-\tau_{x}} \qquad \mathbf{x_{max}} \sim \mathbf{L}^{\gamma_{xr}} \qquad \langle x^{q} \rangle$ Parameters relation $x \sim x' \gamma_{xx'}, \ \gamma_{xx'} = \frac{\tau_{x'} - 1}{\tau_{x} - 1} \qquad \sigma_{x}(q)$ Moment Analysis $\langle x^{q} \rangle = \int dx x^{q} P_{x}(x) \qquad \text{slope}$

characteristic quantity of the model

 $\sigma(q)$ value

$$\sigma_x(q) = \frac{\partial \ln \langle x^q \rangle_L}{\partial \ln L}$$

Ben-Hur et al.

D

S. Lübeck

$\sigma_x(q) = \gamma_{xr}q + \Sigma, \qquad \Sigma = 1 - \tau_r$

- We get that the intercept Σ of the linear q-dependence of the moment exponent σ_x(q) is the same for all distributions (size, area, duration, etc.) and is therefore a characteristic quantity of the model.
- Considering two models we get that different values of Σ implies different universality classes.
 But the same value of the intercept Σ does not imply that both models belong to the same universality class.

BTW Model

Manna Model

Shell structure

Irregular structure

Conclusion

 On the basis of the difference in the γ 's for the BTW and Manna models we conclude that the two models are not in the same universality class.

~Thanks for your attention~

Þ