
GEOPHYSICS, VOL. 57. NO. 9 (SEPTEMBER 1992). P. 11661177. 12 FIGS. 

Adaptive surface-related multiple elimination 

D. J. Verschuur*, A. J. Berkhout”, and C. P. A. Wapenaar* 

ABSTRACT 

The major amount of multiple energy in seismic data 
is related to the large reflectivity of the surface. A 
method is proposed for the elimination of all surface- 
related multiples by means of a process that removes 
the influence of the surface reflectivity from the data. 
An important property of the proposed multiple elim- 
ination process is that no knowledge of the subsurface 
is required. On the other hand, the source signature 
and the surface reflectivity do need to be provided. As 
a consequence, the proposed process has been imple- 
mented adaptively, meaning that multiple elimination 
is designed as an inversion process where the source 
and surface reflectivity properties are estimated and 
where the multiple-free data equals the inversion res- 
idue. Results on simulated data and field data show 
that the proposed multiple elimination process should 
be considered as one of the key inversion steps in 
stepwise seismic inversion. 

INTRODUCTION 

Many methods have already been developed to remove 
multiple reflections from the data. The most popular method 
is undoubtedly statistical least-squares, prediction-error fil- 
tering. It performs best on smull ofiet reflection data from 
one-dimensional (1-D) media. Multiple elimination based on 
velocity discrimination (CMP stacking, optionally preceded 
by filtering in the f-k or 7-p domain) assumes that the 
primaries and multiples have sufficient differential moveout 
to make a distinction between them. Still a human interpre- 
tation of the data is needed to make this distinction, if at all 
possible, and the method performs best on large &et data. 
An important category of model-based multiple elimination 
methods removes all water-layer multiples and water layer 
reverberations by wave theory-based prediction. A model of 
the water layer must be available. 

The proposed surface-related multiple elimination method 
appears to be a very attractive alternative, especially in 
those situations where the above methods fail, e.g., in 
situations with small or difficult-to-distinguish velocity dif- 
ferences between primaries and multiples, or in complex 
media where such simple methods do not suffice. In the case 
of strong subbottom reflectors, relatively strong surface- 
related multiples (which are not all water layer-related) can 
be expected in the data, particularly for a deep target (say 
later than 2 s). In this situation, the surface-related multiple 
elimination looks very promising. 

The historical development of this method starts with 
Anstey and Newman (1967), who observed that with the 
autoconvolution of a trace, primary events were transformed 
into multiples. Kennett (1979) described an inversion 
scheme in the k,-o domain to eliminate multiples for a 
horizontally layered elastic medium. Berkhout (1982, chap- 
ter 7) redefined the multiple problem for laterally varying 
media by using a wave theory-based matrix formulation. An 
adaptive version has been shown with examples in 
Verschuur et al. (1989) and Wapenaar et al. (1990). The 
method described here is based on Berkhout’s approach and 
handles both single-component acoustic and multicompo- 
nent elastic data. In the latter case, by taking the full elastic 
reflection at the free surface into account, all surface-related 
multiply reflected and converted events can be eliminated. 
In all cases, it is important that the data represent upgoing 
reflected waves, related to downgoing source waves. Hence, 
before applying this multiple elimination procedure, a de- 
composition of the measured seismic data into up- and 
downgoing waves must be applied (preprocessing). In this 
paper, we will concentrate on the marine case. 

The proposed method can be considered as the counter- 
part of the wave equation-based water layer, multiple pre- 
diction method, as described in Bernth and Sonneland 
(1983), Berryhill and Kim (1986), and Wiggins (1988). In 
these methods, the wavefield is extrapolated one round trip 
through the water layer, so that each event is transformed 
into a water-layer-related multiple of one order higher than it 
is. These predicted multiples are then adaptively subtracted 
from the data. 
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When comparing published techniques with our scheme, 
the following differences are found: 

1) The parameters for our adaptive procedure are signifi- 
cantly simpler: i.e., surface boundary parameters ver- 
sus surface layer parameters. 

2) The number of types of multiples that are eliminated in 
our procedure is larger: i.e., all surface-related multi- 
ples versus the water-layer-related multiples. This ad- 
vantage becomes more noticeable deeper in the seismic 
section. 

On principle, the multiple elimination method as described 
in this paper can be applied in a three-dimensional (3-D) 
sense. From a theoretical point of view, this requires seismic 
data to be measured on a dense grid in the X- and y-direction, 
for both sources and receivers. However, it may be expected 
that this strict theoretical requirement can be relaxed. This 
important aspect is being studied now. In this paper, only the 
two-dimensional (2-D) case will be considered. 

MULTIPLE ELIMINATION FOR SINGLE-COMPONENT DATA 

Forward model of seismic data 

The multiple elimination procedure can be expressed for 
data acquired in both acoustic and elastic media. The deri- 
vation for the single-component case will be given here, 
assuming that only longitudinal (P) waves are measured. For 
marine data this is always the case, as acquisition is done in 
the water layer. For land data, the theory requires multicom- 
ponent data. However, experiments on synthetic land data 
show that good results are also obtained for single-compo- 
nent data. In fact, the proposed method can be formulated as 
a well-stabilized inversion process and therefore a forward 
model of the seismic data will be derived first. The matrix 
notation introduced in Berkhout (1982) will be used. 

We consider a 2-D seismic line with a fixed spread of N 
detectors. The shot is positioned at the first detector position 
and moved one detector spacing after each shot, finally 
resulting in N shot records, as shown in Figure 1. The shot 
records are Fourier transformed to the frequency domain, 
and data are separated for each frequency. This results in N 
monochromatic common-shot gathers, each consisting of N 

Fourier transform extract monochromatic shot records 

complex samples. These monochromatic shot records are 
stored into the columns of a matrix, defining the data matrix 
for this particular frequency. Such a data matrix can be 
constructed for each frequency component. So one data 
matrix describes the total 2-D seismic data for one frequency 
component. As most seismic processing can be done inde- 
pendently for each frequency, this matrix notation is very 
powerful. Matrices are indicated with bold capitals and a 
tilde underneath, like p-( zO), in which z0 indicates the 
depth level z = z0 to which this matrix is related (i.e., the 
depth level at which source and receivers are located). For 
2-D seismic data, we get matrices of dimension N with the 
zero offset data on the main diagonal and the common- 
midpoint data on the antidiagonals. With this discretized 
notation, spatial convolutions can be described by matrix 
multiplications. Note that in practice, the defined square 
data matrices are only partly filled with data (i.e., a band 
matrix). 

The upgoing pressure wavefield PO- ( z,,) at the surface can 
be written as: 

Pi(zo) = ~,,(z,,, zo)s+(z(J), (1) 

where S’ ( zU) is the matrix containing the downgoing source 
wavefields at the surface and X0( zo, zO) is the response 
matrix of the subsurface for a nonrejecting surface. &(zo, 

zO) contains all primary reflections and internal multiples of 
the subsurface. The reference z. indicates that the data is 
related to the surface. Figure 2a gives schematically the 
model of the seismic data as defined in equation (1). Note 
that the upgoing wavefield as given in equation (1) is not 
directly the measured seismic data. We will come back to 
that later. Note also that the description of equation (1) is a 
multisource description, as each column in the source matrix 
S’( zo) contains the downgoing source wavefield for each 

a) 

b) 

FIG. 1. A full data matrix is acquired with a fixed spread of 
detectors and the source positioned at a detector position for 
each shot record experiment. The detector positions for one 
shot record correspond with the elements of one column in 
the data matrix. The shot records are first Fourier trans- 
formed to the frequency domain, then reordered into mono- 
chromatic shot records with each frequency component 
stored in a column of the monochromatic data matrix. 

FIG. 2. (a) Forward model of seismic data without surface- 
related multiples. The source wavefield reflects in the sub- 
surface and reflected waves arrive at the surface. (b) For- 
ward model of seismic data with the surface-related 
multiples included. At the free surface the upgoing wave- 
fields reflect and go back into the subsurface again. 
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shot record experiment. For pure dipole sources, the source 
matrix will be a diagonal matrix, with the diagonal elements 
being the source Fourier components Sj(w), with j indicat- 
ing the shot number. If source arrays are being used, the 
off-diagonal elements become nonzero, describing the array 
elements. 

In the presence of a free surface, any upgoing wave 
arriving at the surface will reflect and transform into a 
downgoing wave. This means that the total downgoing 
wavefield leaving the surface not only consists of the illumi- 
nating source wavefield S’( z,,), but also of the downward 
reflected upgoing wavefield (including multiples), rj (z,,) 
p- (20). Hence, equation (1) should be modified according 
to 

!Y(zo) = Xo(z,,, zo)[S+(zo) + R-(zo)P-(zo)l> (2) 

with p-( zo) being defined as the total upgoing wavefield at 
the surface zo, and R- ( zo) being the reflectivity matrix of 
the free surface. Figure 2b gives the block diagram repre- 
sentation for equation (2) in which the reflecting surface 
effects have been included. Note that equation (2) is an 
implicit expression for the data with multiples pm (zo). The 
explicit expression for the total upgoing wavefield at the 
surface including surface-related multiples can be derived 
from equation (2): 

P_(zo) = [!! - Xo(z0, zo)R~(zo)l-‘Xo(zo~ zo)s+(zo), 

(34 

or, by defining &( zo, zo) as the response of the subsurface 
with surface-related multiples included, 

P_(zo) = X(z0, zo)S+(zo). (3b) 

with 

X(ZO> 10) = [I - Xo(z0, zo)K(zo)l-‘Xo(zo, zo). (3c) 

The inverse matrix in equation (3a) can be expanded in a 
series, yielding 

P_(zo) = ;: 

1 

Bo(z 0, zo)R-(zo)}” Xo(z0, zo)S+(zo)> 
n=O 1 (44 or, Pm(zo) = [I + BO(ZO> zo)Rm(zo)} + IXO(ZO> zou~(zo)IZ + IXO(ZO~ zo)B~(zo)~3 + . . .lXO(ZO~ zo)s+(zo). (4b) 

Comparing equation (4) with equation (1) reveals that the 
extra terms in equation (4) generate all surface-related mul- 
tiples. 

For a pressure-free surface in the acoustic (marine) case, 
the reflectivity matrix 8 (zo) simplifies to: 

Rm(zO) = r0I, (54 

in which ideally r. = - 1. Taking the reflection matrix as a 
(scaled) unit matrix also requires that source and receiver 
positions are located on an equidistant grid. Strictly speak- 
ing, deviations from this requirement will give rise to (small) 
errors in the multiple elimination result. This can be over- 
come by including an interpolation operator in R- ( zo). 
However, we have noticed that our data-adaptive version 
can cope perfectly with this problem in a number of situa- 
tions. For single-component land data, we do incorporate 
the full elastic reflectivity matrix f3- ( zo) which describes 
reflection from P- to P-waves. As mentioned before, for 
single-component land data, we neglect S-waves. 

Using equation (5a), equation (3a) simplifies to: 

Pm(zO) = [I - roXo(z0, ZO)I~‘XO(ZO, zO)S+(zo), (5b) 

or, by expanding the inversion term into a series: 

P-(zo) = [I + r0X0Cz0, ZO) + r,2Z,?(z0, ZO) 

+ . . .lX”(ZO. zoB’(z0). (5c) 

Note that &,(zo, zo) describes everything that happens in 
the subsurface, including elastic and even anisotropic effects 
and absorption. The onb assumption made in equations (5a) 
to (5~) is that only P-waves are measured and that the 
surface reflectivity can be represented by reflection coeffi- 
cient ro. This is typically true for marine data. 

Elimination of the surface-related multiples 

To remove the multiples from the data p-(zo), equation 
(2) can be inverted to get an explicit expression for X0( zo, 
zo): 

X,,(ZO> zo) = P-(zom+(zo) + R~(zO)Tj-(zo)lr’> (W 

or, by using equation (3b): 

Xo(z0, zo) = X(z0, zo)[I + R~(Z())(ZO, zo)lr’. (6b) 

Straightforward inversion of the inverse matrix at the right- 
hand side of equation (6b) results in instability if strong 
multiples are present. To understand this, the inverse matrix 
in equation (6b) is written as the following series expansion: 

I 

r 

Xo(z0) = X(z0. zo) c {-R-(zo)X(zoY iO)jn 1 1 (74 n = 0 or, XO(iOY Z(l) = X(ZO? zom - {Rm(zo)Xo(zo, zo)} + W(zo)Xo(zo, zo)12 - ~R-(zo)Xo(zo, zo)13 +. . .I. U’b) 

The inverse in equation (6b) implies an infinite number of 
terms at the right-hand side of equation (7). In the presence 
of strong multiple reflections (e.g., water reverberations at 
post-critical angles) the series expansion converges very 
slowly, and straightforward inversion as described by equa- 
tion (6b) is unstable. Taking only a limited number of terms 
into account in equation (7) stabilizes the inversion. The 
number of terms that should be taken into account depends 
on the highest-order surface-related multiples present in the 
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data (of finite duration), because each additional term taken 
into account in equation (7) results in eliminating surface- 
related multiples of one order higher. 

Using equation (5a), equation (7b) becomes: 

Xo(zoY z0) = X(z0, ZO) - roZ’(z0, 20) + r&‘(z0, ZO) 

- r$4(z0, z(j) + . . . . (8) 

It is obvious from equations (7b) and (8) that no model of the 
subsurface is used in this procedure. Only the seismic data 
after deconvolution for the source wavefield, i.e. X( zo, z(,) 
and the free surface reflectivity properties, the scalar ro, are 
used. In fact, the data itself is used as the multiple prediction 
operator. Apparently, the data contains all necessary infor- 
mation about the subsurface to predict the multiples! 

Note the fact that to eliminate the multiples of one shot 
record (one column in X( zO, zo)], all other shot records [i.e., 
all other columns of the matrix X( zO, zo)] are needed; the 
matrix multiplications describe 2-D convolutions of the data 
with itself in the time and space direction. 

Avoiding temporal wraparound problems 

Each matrix multiplication in the multiple elimination 
method of equation (7) or (8) will increase the traveltimes. The 
wraparound in the time domain can only be avoided by padding 
zeroes in the time direction before going to the frequency 
domain. However, this would mean that for eliminating Nth- 
order multiples the trace length should be roughly N times as 
long as the original length. This inconvenience can be over- 
come if the method is applied in the complex frequency plane 
(in fact in the Laplace domain). This can be achieved by 
applying a temporal taper of exp (-at) on the data, with cx being 
a constant between I and 2. This exponential tapering proce- 
dure has been used in the past for modeling data in the 
frequency domain and is described in Rosenbaum (1974) and 
reviewed in Thybo (1989). After tapering, the data is Fourier 
transformed, and the multiple elimination method can be 
applied. The result is transformed back to the time domain, and 
the exponential taper is removed from the traces. 

Adaptive multiple elimination 

Using the data as a multiple prediction operator, requires 
that the data be properly deconvolved for the source wave- 
field and that the data have true amplitudes (both relative 
and absolute: the data should be a true unit-valued impulse 
response of the medium). Therefore, the procedure, as stated 
in equation (8). will never work satisfactorily on real data: an 
adaprivr multiple elimination procedure must be implemented. 

Substituting equations (1) and (3b) into equation (8) results 
in: 

PtY(z0) = P-(~0) - ,-0{P~(zo)S+(z0)~‘}P~(z0) 

+ ro2{P-(z0)S+(z0)~‘}‘P~(z,,) 

3 
- r,lP-(zo)S+(zo)-‘)3P-(zo) +. . . (9) 

Assume for the moment that the source wavefield can be 
written as: 

s+(zo) = S(o)I_, (10) 

with S(W) as the frequency-dependent source signature. This 
means that the assumption is made that an angle-dependent 
deconvolution for the source directivity pattern has been 
applied in advance, and that the residual sources consist of 
identical point sources each with signature S(w). Note that a 
diagonal source matrix as defined in equation (IO), implies 
pressure dipole sources, as explained in Berkhout (1982). To 
do the angle-dependent deconvolution, a forward descrip- 
tion of the seismic source array should be calculated first. 
This array response can then be corrected for by a direc- 
tional deconvolution procedure on common receiver gathers 
in the x-o domain. Fokkema et al. (1990) describes such a 
directional deconvolution method in the x-w domain. The 
deconvolution can also be applied in the k,-o or t-p domain 
if the plane layer assumption is valid. It can be argued that in 
many practical situations directional deconvolution can be 
omitted. 

Using equation (lo), equation (9) becomes: 

Po(zcr) = Pm(z,,) - A(w)[P-(zo)]’ + A’(w)[Pm(zo)13 

- A3(w)[Pm( :,,)I4 + . . . , 

with surface factor 

(Ila) 

A(o) = roS -‘(co). (Ilb) 

Note that equation (1 la) includes matrix multiplications of 
the data with itself, showing that the result for one trace 
(matrix element) is constructed by a summation of contribu- 
tions of a common receiver gather (row) with a common 
source gather (column). It corresponds to a Kirchhoff sum- 
mation of the data extrapolated recursively with an operator, 
which is the data itself again (i.e., lateral convolutions). 

The source signature S(W) must also contain the scaling 
factor of the data and a possible time delay in the data. The 
factor A(w) should scale (i.e., deconvolve) the terms 
P_(zo)‘. p-(zo)3. etc., in such a way that the predicted 
multiples match in umplitrrdr and phase with the multiples 
present in the data, so that they can be subtracted as shown 
in equation (I la). 

As the frequency-dependent scaling factor A(o), as de- 
fined in equation (11 b), will generally not be known, it should 
be estimated by making the multiple elimination procedure 
adaptive in the sense that those values for A(o) are to be 
found which give the best elimination of the multiples. The 
adaptive version is visualized in Figure 3. As a result, those 
optimal values of A(w) give an estimate for the invrrsa of the 
source signature. Hence, by applying our adaptive multiple 
elimination process, the multiples are eliminated und the 
inverse source signature in the data is estimated at the same 
time This estimated inverse source signature can be used to 
deconvolve the source signature. Note that r,, and S-‘(o) 
cannot be estimated independently, but only in combination, 
I.e., A(o) is estimated. Note also that A(w) contains any 
amplitude and phase information of the recording instrument 
and the preprocessing algorithm. 

Using equation (I I) for multiple elimination on single- 
component land data, we assume an average (angle-indepen- 
dent) free-surface reflection coefficient r. instead of a reflec- 
tivity matrix R_(Z”). If we know the reflection 
characteristics of the free surface for land data (from the 
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velocities just below the free surface), it is, of course, 
possible to take this into account by calculating the terms 

55~(20)13-(~0)~, ~~~(z~)P~(z~)~*P~(z~), etc., [as in 
equation (7)] to estimate the inverse source signature. Note 
that what is estimated is the original source signature that 
has been emitted by the source, which is not identical to the 
wavelet you see on your traces. 

To judge whether the multiples have been eliminated, the 

total energy in the resulting upgoing wavefield is used. We 
assume that, after having eliminated all surface-related mul- 
tiples, a minimum energy is contained in the upgoing wave- 
field. This is intuitively understood by considering the fact 
that the free surface bounces the upgoing energy back into 
the medium, causing an increase of energy. Note that in 
equation (1 la), the first term (the data p-( zO) itself) is not 
affected by A(w). This means that the primaries are pre- 
served during the optimization procedure. After optimiza- 
tion, the estimated function A(w) can be used to deconvolve 
the primary data set for further processing steps. 

For the optimization process, A(o) is parametrized by a 
number of definition points in the frequency domain, and the 
complete function is interpolated (see Figure 3). This is done 
to keep the number of parameters low. Taking a coarse 
sampling in the frequency domain, for example Af, also has the 
advantage in that the time length of the estimated inverse 
source signature is limited to l/Af. The interpolation procedure 
can be applied, e.g., by a Fourier-based sine-interpolation or 
by a cubic spline interpolation. The actual optimization can be 
done by any standard technique. For the examples discussed in 
this paper, a steepest descent method has been used. 

Note that the terms P-(Q)~, P-(Q)~, etc., can be calcu- 
lated in advance. The residual energy is a function of the 
frequency-dependent scaling function A(o) only, as can be 
observed in equation (1 la). Therefore, during the optimization 
process, only a weighted summation of these terms has to be 

- P(z,) - A(o) P?z, > + A?o) P3@-,) = c_p,(z,b 

update 
parameters + 

A(o) 

inverse wavelet parametrization 

FIG. 3. Adaptive multiple elimination, simultaneously esti- 
mating of the source signature by minimizing the total energy 
in the data. (Note that the matrices represent all shot records 
in the frequency domain and the data panels represent one 
shot record in the time domain). 

applied for each new set of parameters [see equation 1 l(a)]. 
Note also that no assumption on the source signature need be 
made (zero phase or minimum phase), which means that any 
mixed phase source signature can be estimated! 

Decomposition of single-component data 

In the preceding sections, the input for the multiple 
elimination procedure were supposed to represent the upgo- 
in.g pressure wavefield pm (z,“) at the free surface. Both for 
marine and land data this is not the actual measured data. In 
the case of marine data, the total pressure is measured below 
the free surface, whereas for land data the vertical compo- 
nent of the total particle velocity is measured at the free 
surface. So before starting the multiple elimination process, 
decomposition should be applied to arrive at upgoing reflected 
wavefields due to downgoing source wavefields. This type of 
decomposition is generally referred to as “deghosting.” 

First we consider the marine data case. The receivers are 
located at depth level z,~ below the free surface and detect 
the total pressure wavefield. For one monochromatic shot 
record, the recorded wavefield is written as P( zd), which is 
one column of the data matrix p(zd) for the frequency 
component under consideration. If the free surface can be 
locally considered as flat and the medium near the surface as 
locally homogeneous, the decomposition process can be 
carried out in the k.,-o domain. In this domain, we have 

%%, zd, o), i.e., P( zd) after a Fourier transform in the 
x-direction, which is the sum of the upgoing wavefield 

Pm(k.,, zd, w) and the downgoing wavefield p’ (k,, zd, o) 
after reflection against the free surface (the ghost). Using the 
phase shift operator for propagation we obtain 

i?k., , zd> 0) = F-G., > zd> 0) + p+(k., , zd> w) 

= Pm(k,, zd, w)[l + roem2jn~Az], (12) 

with k: = m, k = olc = 2nflc, f is the frequency, 
c’ the P-wave velocity in water and AZ = /zd - zOI. 
Inverting equation (12) yields the upgoing wavefield at depth 
level z = zd. Extrapolating this wavefield up to the free 
surface results in: 

Equation (13) describes the acoustic decomposition proce- 
dure, which removes the receiver ghost as a function of 
angle and extrapolates the ghost-free upgoing wavefield to 
z = zo. To reduce instabilities, stabilizing equation (13) is 
recommended by applying a high-angle reduction filter and 
adding a stabilization factor E to the denominator (e = 0.01). 

For the source ghost, a similar decomposition could be 
applied, but if the source depth is rather small (smaller than 
half the dominant wavelength) a monopole source, together 
with its ghost, form a dipole source. Since the adaptive multiple 
elimination procedure, as described by equation (1 I), assumes 
dipole sources [see equation (lo)], the source ghost should be 
left unharmed. As mentioned before, if high angle multiple 
energy needs to be removed, the directivity effect of source 
and receiver arrays should be removed by deconvolution. 

For land data, the vertical component of the particle 
velocity of the wavefield at the free surface is recorded. 
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Wapenaar and Berkhout (1989) give the relation in the k,-o 
domain between the total pressure F(kx, z, w) and the 
vertical velocity component v,(k,, z, w) at a depth level z, 
as well as the up- and downgoing pressure wavefields 
P-(k,, z, w) and d+(k,, z, w): 

where p is the local density of the medium. At the free surface 
z = zo, the total pressure F(kx, zo, w) vanishes, hence, 

a) 
-b I 

lOOO{I 

0 500 1000 1500 2000 

a-way travel time (ms) 

1 w - 
B-(k,, zo, w) = -2 k V,(k,, zo, w). (15) 

.? 

For land data stabilization, adding a small positive number 
to the denominator of equation (15) is needed to avoid 
dividing by zero. Of course, the treatment of land data can 
only be completely satisfactory if multicomponent data is 
available. Equation (15) refers to P-waves only. 

On land, the surface medium parameters may vary later- 
ally, meaning that the decomposition operators should be 
calculated with the local parameters. Transforming the opera- 
tors from the k,-w domain to the x-w domain yields different 
spatial deconvolution operators for different lateral positions. 
These can be stored in the columns of a decomposition matrix 
and applied to the dam by a matrix multiplication. 

Examples of single-component multiple eliition 

To illustrate our method, we first consider a horizontally 
layered model, allowing an instructive qualitative and quan- 
titative discussion. Figure 4a gives the velocity and density 
log as a function of two-way traveltime. Figure 4b shows a 
shot record modeled in this medium using an acoustic 
finite-difference modeling algorithm. The trace sampling is 
12.5 m and the number of offsets shown is 300. Both source 
and receivers were positioned 5 m below the free surface. 
The source is a monopole and the receivers measure the total 
pressure wavefield. Figure 6a shows the mixed-phase source 
signature used for this modeling. The first processing step is 
a decomposition of the recorded wavefield into the upgoing 
wavefield at the free surface. The result of this procedure for 
the shot record of Figure 4b is shown in Figure 5a. The effect 
of this decomposition is twofold: it restores the original 
source signature from ghost interference, and it restores the 
amplitude versus offset from the angle dependent character 
of the receiver ghost. Next, the adaptive surface-related mul- 
tiple elimination process is applied to the data of Figure 5a. We 
see in Figure 5b that ah 10 primaries can be easily identified 
(which is impossible in Figure 5a) and that only minor internal 
multiples remain in the lower part of the section. The results of 
the multiple elimination process can also be verified from the 
velocity panels corresponding to the sections of Figure 5a and 
5b. Figure 6b shows the estimated source signature, which is 
almost identical to the original source signature within the 
frequency band of estimation (six definition points between 8 
and 48 Hz). As expected, it is impossible to recover the source 
signature up to 80 Hz, as the energy is very low above 50 Hz. 
Note that the phase spectrum has also been accurately recov- 

3000 _ density 

0 
I I I 

500 1000 1500 2000 

2-way travel time bns) 

W 

I 

i 

FIG. 4. (a) A horizontally layered medium used to model 
seismic data with acoustic “finite-difference” software. The 
velocity and density logs are given as a function of two-way 
traveltime. (b) Realistically simulated shot record in the 
subsurface model of (a). The data shown represent the total 
wavefield measured just below the free surface. 
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ered without making any assumption. The initial guess for the 
steepest descent optimization was a spike signature. 

Next, we examine the subsurface model of Figure 7. It 
contains strong lateral inhomogeneities with a dome struc- 
ture. Note that the model is not completely symmetric 
around the dome structure. Figure 8a shows a shot record 
after modeling with an acoustic finite-difference algorithm 
with the source at 1100 m, which is just to the left of the top 
of the dome. As can be observed from Figure 8a, the 
multiples have a very complex behavior and a very high 
amplitude compared to the primaries of the deeper inter- 
faces. After adaptive surface-related multiple elimination, 
the result for the shot record of Figure 8a is shown in Figure 
8b. The strong multiples (indicated in Figure 8a) have been 
eliminated and the weak primaries (indicated in Figure 8b) 
have been very well restored from interference with the 
multiples. Figure 8c and d show the zero offset section of this 
data set before and after multiple elimination. Note the 
diffractions that are visible in the curved part of the first 
reflection; they are true primaries due to the model discret- 
ization; the resulting complex “stair case” reflectivity be- 
havior of the first interface could be fully handled by the 
multiple elimination scheme (we do not need any subsurface 
information). Note also, that for the multiple elimination 
result of one shot record, all other shot records are involved. 
This can be understood from the multiplication of the data 
matrix with itself, where rows (common receiver gathers) 
are multiplied with columns (common shot gathers). 

MULTIPLE ELIMINATION FOR MULTICOMPONENT DATA 

Due to the fact that we use the matrix notation, the surface- 
related multiple elimination method can easily be extended to 

a) offset Iml 

multicomponent land data. It only requires extension of the 
matrix notation such that each matrix element becomes a 
subvector. For an elaborate description of the multicomponent 
matrix notation see Wapenaar et al. (1990). 

Using the multicomponent data and the elastic description 
of the free surface reflectivity, it is possible to remove all 
surface-related multiples and conversions from the data. We 
have obtained excellent results on synthetic land data. The 
next step will be an evaluation on field data. 

EXAMPLE ON A REAL MARINE DATA SET 

The acoustic multiple elimination process, consisting of 
about 300 shot records with 120 traces each, has been 
applied to marine data. The source and receiver spacing is 
2.5 m. The missing near-offset gap is 150 m. If these offsets 
are left empty, serious edge effects will contaminate the 
multiple elimination result. Hence, the missing offsets have 
been interpolated. In the figures, the interpolated traces are 
deleted. Figure 9a shows the result of the adaptive multiple 
elimination process for one shot gather (shot 180) with, from 
left to right, the shot gather with multiples, the shot gather after 
multiple elimination and the difference between them, i.e., the 
eliminated multiples. Figure 9b shows the velocity panels 
belonging to the same shot position for the data with and 
without multiples and the multiples only. Both from Figure 9a 
and b it is clear that the multiple elimination worked very well 
and that primaries could be separated from the multiples. Also 
note the enormous amount of multiple energy compared to the 
primary energy (see at arrows). The velocity panels show that 
all eliminated events are (correlated) multiple events indeed. 
Note again that for the result on one shot gather all other shots 

D) 
onset irnl 

FIG. 5. (a) Shot record of Figure 4b after decomposition into upgoing waves at the free surface with the corresponding velocity 
panel. (b) Shot record of (a) after adaptive surface-related multiple elimination and its corresponding velocity panel. 
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FIG. 6. (a) Mixed phase source signature used to model the shot record of Figure 4b. (b) Estimated source signature after the 
adaptive multiple elimination. The phase spectra are plotted after a shift of the signature of -24 ms. 
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FIG. 7. Subsurface model with a dome for modeling seismic 
data. 
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were also used; the information to predict multiples for one 
shot record is distributed over all other shot records. 

The multiple elimination method took approximately 10 
minutes of CPU time per shot record on a Convex Cl and 30 
seconds of CPU time per shot record on a Cray YMP. The 
algorithm has not been fully optimized for speed. 

A common offset section from the data before and after 
multiple elimination has been selected, which is shown in 
Figure 10a and b, respectively. In these sections, we can 
observe the varying character of multiples going from left to 
right. Small disturbances in subsurface reflectivity produce 
large variations in multiple energy. Note especially the small 
synclinal structure in the sea bottom around shot 70, which 
produces a focusing effect of multiples. The result of this 
lateral inhomogeneity in the subsurface on the multiples could 
be handled perfectly with our scheme as no assumptions on the 
subsurface have to be made. Figure 1Oc shows the difference 
plot of the sections before and after multiple elimination; it 
shows the large amount of removed multiple energy. 
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FIG. 8. (a) Shot record with source at 1100 m. in the model of Figure 7. (b) Same shot record after adaptive surface-related 
multiple elimination. (c) Zero offset section from the data modeled in the subsurface model of Figure 7. (d) Zero offset section 
after adaptive surface-related multiple elimination. 
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Also, a stack of the data has been generated before and after 
multiple elimination; the velocity analysis was done on the data 
after multiple elimination. Figure I la shows the stacking result 
with multiples. As expected, the removal of multiple energy is 
not so spectacular on the stacked sections, because for this 
situation the velocity differences between primary and multiple 
events is sufficient to remove a significant amount of multiple 
energy by stacking. But there are still many multiples that 
appear on the stack before multiple elimination (Figure I la) 
which have been effectively removed by the surface-related 
multiple elimination method (Figure I I b). In Figure I la, some 
of these events and areas have been indicated by arrows. As a 
matter of fact, these are the multiples that have small moveout 
differences with the primaries and belong to the category 
“remaining surface-related multiples.” To judge the value of 
the stack after multiple elimination, the difference plot of the 
stacked section before and after surface-related multiple elim- 
ination is shown in Figure 1 Ic. The difference plot shows 
correlated events, especially in the lower part of the section. In 
the target zone, which is between 2200 and 2400 ms, a stacked 
multiple of 2300 ms is visible at the left side of Figure I Ic (see 
the arrow); it is masking the primary reflection that occurs at 
the same time in Figure I lb. Note again the band of focused 
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multiples under the small synclinal structure around CMP 
positions 70 and 170 in Figure I Ic. As a last remark on this 
subject, it should be mentioned that the improvement of 
prestack data (restoring the primaries over the full offset range 
(see Figure 9a) is of more interest to the industry than the 
improvement of the stack. 

Finally, Figure I2 shows the estimated source signature 
from this marine data set. We allowed a small noncausal part 
for this source signature because the seismic data has been 
band-pass filtered with a zero phase filter. Note that no 
assumption was used on the property of the phase spectrum. 

EXTENSIONS OF THE MULTIPLE ELIMINATION METHOD 

Inversion of the multiple response 

After the multiple elimination method, we end up with: 

1) the primary section (with internal multiples); 
2) an estimated (inverse) source signature; 
3) the multiple section. 

In conventional inversion, the primary data are used as 
input. However, as the proposed processing method provides 
the multiple response as well, we are now working on a 
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FIG. 12. Estimated signature from the real marine data set. 

complementary inversion scheme that uses the multiple data as 
input. As the multiple data contains more information on the 
mulGple-generating boundaries than the primary data, it may 
be expected that the complementary inversion scheme will be 
pre-eminently suited to estimate the upper part of the surface. 

Applying the multiple elimination method recursively for 
internal multiples 

After multiple elimination, the “primary” data can be down- 
ward extrapolated to a new “surface” and the adaptive multi- 
ple elimination process can be applied again with respect to the 
new surface. Actually, this process could be made part of 
prestack depth migration: e.g., internal multiples are removed 
after applying the imaging principle and before applying the 
next extrapolation step (Berkhout, 1982, chapter 7). 

Those extensions are currently being implemented. 

CONCLUSIONS 

A prestack inversion method has been proposed that 
removes all surface-related multiples without any knowledge 
about the subsurface. Data from any inhomogeneous me- 
dium can be handled. If multicomponent data is available, all 
surface-related conversions can be removed as well, taking 
the elastic reflectivity effect of the free surface into account. 
Before the multiple elimination process can be applied, the 
source wavefield together with the data scaling factor and 
the surface reflectivity must be known (surface-related pa- 
rameters). Because the source wavefield (with scaling factor) 
is not available in practice, the proposed process must be 
applied adaptively, estimating the scaled source signature by 
minimizing the energy in the data after multiple elimination. 
Hence, together with the properly scaled multiple free data, 
an estimate of the source signature is obtained as well! 
Another unique property of the proposed method is that 
primaries and multiples may have exactly the same move- 
out. Results on simulated data and on field data show that 
the proposed multiple elimination process may become one 
of the key inversion steps in stepwise seismic inversion 
(Berkhout and Wapenaar, 1990). 
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