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Connectivity Theory — A New Approach to Modeling Non-Archie Rocks!

Bernard Montaron?

So-called Archie rocks are characterized by a
resistivity index (RI) versus water saturation that plots
as a straight line on log-log scale, the line’s slope
being equal to —n where 7 is the saturation exponent.
All rocks for which the RI has curvature qualify as
non-Archie rocks. This paper presents a relationship
(equation 6) that links the true formation resistivity R,
to water saturation S and formation porosity ¢. This
differs from Archie’s equation in its simplest form
by the introduction of a small term called “water
connectivity correction index” (WCI) y, to correct for
water connectivity effects. This term helps to stabilize
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the single exponent in the model called the conductivity
exponent u — equivalent to Archie’s equation when n = m.
Amethod to derive analytical expressions fory, for various
formations is introduced. Effective medium theory is used
with a modified CRIM mixing law to model the WCl as a
function of conductive structures and fluid parameters in
the rock. The model agrees with predictions of Waxman-
Smits and Dual-Water models for shaly sands (concave
down curves) as well as experimental data obtained on
strongly oil-wet rocks (concave up curves). Connectivity
theory also provides insight as to why so many rocks
satisfy Archie’s model.

INTRODUCTION

When G. E. Archie (1942) introduced his equation a
new era for the oil and gas industry began, where for
the first time it became possible to make quantitative
hydrocarbon reserve estimates using resistivity and
porosity logs. In its simplest form

R=— ()
(S.9)
where R is the resistivity of the uninvaded, virgin reservoir
rock, R is the water (or brine) resistivity, and ¢ is the total
porosity of the rock. Archie’s equation works remarkably
well in “clean” water-wet sandstone formations.
In more general form

R =—¥—.
sl @

Archie’s equation requires the determination of two
exponents: the so-called cementation exponent m and
saturation exponent n. The value of water saturation S
is quite sensitive to these exponents. For example for a
relatively small-sized oil reservoir using m = n = 1.8, instead
of 2 as in equation 1, easily returns several additional
billions of dollars in reserves. These two exponents are
known to take different values for various reservoir rocks.
This is especially true for carbonates, for which rock
typing and pore geometry characterization are essential for
petrophysical modeling. Indeed, in carbonates n can range
from less than 1.5 to greater than 3, and m can exceed 4 in
some vuggy rocks. To make things worse, various rock types
tend to be distributed in some carbonate formations with a
high level of heterogeneity. Determining a suitable average
value to use for » and m in such heterogeneous formations,
in order to obtain accurate estimates for hydrocarbons in
place, is quite a challenge.
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Besides understanding the stability of Archie’s
exponents, or the lack thereof, it is also important to
understand when Archie’s equation “works” for a given
rock, and when it doesn’t work so well. One obvious
feature of equation (2) is that the resistivity index plotted
versus water saturation in log-log scale must be a straight
line with slope —n. Lines with slopes —1, =2 and -3 are
shown in Figure 1 in black. Therefore, as soon as a slight
curvature is observed on the resistivity index function,
Archie’s equation no longer applies. Such rocks are called
“non-Archie” rocks.

The blue curve is characteristic of rocks that tend to
remain more conductive than “normal” when the water
saturation is lowered. That is the case, for example, with
shaly sands. The red curve is observed on strongly oil-
wet rocks. As illustrated in Figure 1, it is not possible to
define a unique saturation exponent on such curves. In
this example the slope picked locally at different points
along the curve takes values ranging from -2 to —10; i.e.,
from n =2 to n = 10, with n calculated using

_ dIn(RI) S, d(RI)
din(S,)  RId(S,)

The objective of this article is to propose a theory to
explain why Archie’s equation seems to work in many
cases, and why it doesn’t for some rocks. The objective is
also to propose a model that is applicable to non-Archie
rocks, and that reduces to Archie’s equation for the most
probable values of its parameters.

The characterization of n and m is usually done on cores
by performing special core analysis (SCAL). Cores
brought back to the lab from downhole are submitted to
various treatments in order to “restore” them as much
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Fig. 1 Resistivity index vs. S in log-log scale. Archie’s
equation corresponds to straight lines in black (slopes — 1,
—2,—3) and does not apply to curves (blue and red).
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as possible; i.e., to put them back to virgin reservoir
conditions. The curve obtained when measuring
resistivity versus water saturation while slowly injecting
crude oil into a water saturated core is called the
“drainage curve”. The curve obtained while injecting
water into an oil saturated core is the “imbibition curve”.
These two curves can be quite different for some rocks,
for example oil-wet rocks. The model developed in this
paper is intended to apply to virgin reservoir rocks and to
drainage curves obtained from SCAL when such curves
are considered representative of the reservoir.

PERCOLATION THEORY AND EFFECTIVE
MEDIUM THEORY (EMT)

A tremendous amount of work was accomplished by
physicists in the 1960s, 1970s and 1980s to understand
universal scaling laws for random percolation. See, for
example, the text books Stauffer and Aharony (1991) and
Lagiies and Lesne (2003). There is an interesting parallel
between percolation on random resistor networks and
transport properties of natural porous rocks. This link was
highlighted in a large number of publications in the last
30 years. Figure 2a illustrates these similarities.

A porous rock can be modeled using a simple three-
dimensional (3D) cubic grid where a proportion p of cells
(blue) are selected at random to be filled with brine of
conductivity ¢ . The other cells (white) represent the non-
conductive solid. The conductivity of the cube shown
in Figure 2a, measured between two opposite metalized
sides, is a function of the conductive paths linking the
two sides. The cube conducts electricity only if the

A WA "~ WA - W " W - ¢

Fig.2a Numerical experlment for random  site
percolation on a simple cubic grid 20x20%20. Only blue
cells are conductive and are here in proportion p = 0.32.
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proportion p exceeds a percolation threshold p which in
the case of a simple cubic grid is equal to 0.3116. Two
conductive cubes are connected only if they share a
square side. The maximum coordination number of this
cubic network is equal to the number of sides of the cube;
i.e., 6. If cubes are allowed to connect through corners,
edges and sides the coordination number can be increased
up to 26 and the percolation threshold becomes slightly
less than 0.1.

Of course the numerical modeling of rocks can be made
much more realistic than the cube model in Figure 2a.
We generated the rock model shown in Figure 2b using a
random process with specific constraints. In this case the
rock is made water-wet: the cubic cells that are in contact
with the surface of pores contain water.

Grainsaregrownrandomlystarting froma3D distribution
of solid nuclei. The growth process stops when the desired
porosity value is reached, here 30 percent. The Laplace
partial differential equation can be solved on this model
using a computer. Unfortunately, this approach does not
meet the objective of deriving analytical formulas for the
conductivity of porous rocks.

Returning to the simple cube model of Figure 2a, near the
percolation threshold the conductivity is known to follow
a power law with a critical conductivity exponent, usually
denoted 7, very close to 2; i.e.

— (M] | )
1-p,

According to numerical simulations performed recently

L
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Fig. 2b A more elaborate cube model with 250x250%250

cubic cells. This plane section shows water in blue, oil in
black and rock in gray.
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by Boris Kozlov and Michel Lagiies at ESPCI in Paris
(2007, pers. comm.) ¢t = 2.002 £ 0.005. They have
also confirmed that the critical region in which the
universal behavior is valid is, however, very small.

In his fundamental paper “Percolation and Conduction”
Scott Kirkpatrick (1973) used effective medium theory
(EMT) applied to conductivity of mixtures to find
expressions of the conductivity of a random resistor
network on a simple 3D cubic grid for bond and site
percolation. Reformulated for the site percolation example
given in Figure 2a the Kirkpatrick EMT conductivity
model takes the form

; “4)

o=0o,p
l-—a

where a is equal to 0.342.

This model is valid for p close to 1, but it appears from
Monte Carlo computer simulations that it is an excellent
approximation for p > 0.5. It is interesting to note that
close agreement can be obtained between equation (4)

and the power law _p\
oc=o0, (p_) , )

1-b
by adjusting the exponent x and the threshold 5.

This agreement is shown in Figure 3. The red curve
labeled ‘Connectivity’ plots equation (5) with 4 = 1.824
and b = 0.271. The agreement is better than 0.1 percent of
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Fig.3 An excellent match is observed between
Kirkpatrick EMT conductivity model for site percolation
on a cubic grid and a power law with an exponent equal
to 1.824.

April 2009



Connectivity Theory — A New Approach to Modeling Non-Archie Rocks

full scale for all values of p above 0.5. The fit is even better
in the interval [0.75; 1] with ¢ = 1.888 and b = 0.250 with
an error less than 0.001 percent of full scale!

This example of the random cube model is interesting
because fundamental physics have established the
conductivity relationship for both ends of the p range; i.e.,
at the percolation threshold p_ and close to 1. The two
equations are different, but it happens that equation (5) can
be fitted to both cases. Of course there is a big difference
between the random cube model and real porous rocks.
Despite that, we will show here that equation (5) can be
used as one key element of a consistent approach to derive
analytical models for the conductivity of rocks.

Equations similar to equation (5) have been proposed by
several authors to model the conductivity of natural
rocks: for example Zhou et al. (1997), Montaron (2005),
Hunt (2005), and Kennedy (2007). Berg (2007) gives an
excellent survey of various EMTs applied to reservoir
rocks.

THE CONNECTIVITY EQUATION

In equation (5) the proportion p of conductive sites is
equal to the probability of finding water — the only
conductive phase in the medium — at a random point in
the cube volume. Therefore, in natural porous reservoir
rocks p is equal to the bulk volume fraction of water ¢ S
where ¢ is the total porosity of the rock, and S is the
water saturation; i.e., the fraction of the porosity occupied
by water.

For reasons that will become clear in the rest of the paper
the parameter b is renamed y  and called the “water
connectivity correction index” or “water connectivity
index” (WCI). We call equation (5) written in a form
similar to equation (2) the connectivity equation; i.e.,

P S
S.o—x.)
O- = O-W '(Sww_zw')/uQ

, where R'=R (1-x)", (6)

where o,'=0c,/(1-y,)".(73)

Theexponent u is called the conductivity exponent. When
modeling reservoir rocks with the connectivity equation
the typical range observed for the exponent is 1.6 to 2.0;
i.e., arange much reduced compared to the range observed
for Archie exponents » and m. This stability has positive
practical consequences. The parameter y (WCI) takes
small values typlcally ranging from —O0. 02 < X, < 10.02.
Indeed the WCl is a corrective term that adjusts the water
volume fraction in equations (6) and (7) to account for
positive or negative water connectivity effects in the rock.
Several examples of these effects are presented in the
remainder of this article.

With such values for the conductivity exponent and the
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WCI the resistivity R’ is almost always within five
percent of the true water resistivity R . The uncertainty
on R is usually larger than this figure and it is acceptable
for some calculations to simplify equation (6) by replacing
R 'by R,

Equation (7a) is the same as equation (6) but with
conductivities instead of resistivities. In some of the
developments made later in this paper we will use the
approximation

o=o,(S.0-x.)". (7b)

As shown in Figure 4, the WCI controls the curvature of
the resistivity index (RI) curve. The RI curve is concave
down for negative values of the WCI and concave up
otherwise. By definition, the resistivity index is the ratio
of R, to the resistivity R of the rock fully water saturated.
This can be expressed by

-5 Y
(%) e

by introducing the critical saturation S, defined by

S.=yx./¢. )

When S is positive (concave up curve) the resistivity
takes very high values when the water saturation is
reduced toward S . For example in Figure 4 the critical
saturation S =0. 12 corresponds to the solid red curve with
X, = 10.03. ‘Such an extreme behavior can be observed in
strongly oil-wet rocks with very high oil saturations (at
least 85 percent).

When the WCI approaches 0 the connectivity equation
reduces to Archie’s equation with n = m = u. This is
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Fig.4 Resistivity Index curves obtained from the
connectivity equation with exponent # = 2. The parameter
X,, controls the curvature.
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an important feature of this model. The large amount
of experimental evidence showing the applicability
of Archie’s equation for many natural rocks makes it a
requirement for any good petrophysical conductivity
model to contain Archie’s equation as the normal case.

The Case of “Clean” Water-Wet Sandstone Rocks

In the site percolation model (Figure 2a) water is
distributed at random in space. The distribution of water in
naturally porous rocks is actually much more constrained
e.g. as shown in Figure 2b.

First, water is in the pore space and the porosity has a
specific geometrical structure with spatial correlations. For
example the porosity of sandstone results primarily of the
stacking of sand grains having a certain size distribution
resulting from erosion due to transport. The pore space
has subsequently been submitted to the effect of the
overburden pressure and cementation. A huge difference
with the site percolation model is the fact that the porosity
in sandstone rocks is almost entirely connected.

Second, wettability is a self-organizing mechanism that
has a dramatic effect on the connectivity of fluid phases
inside the pore space. For example “clean” sandstone
rocks tend to remain strongly water-wet even when
exposed to crude oil at reservoir temperature and pressure
conditions. The surface of pores is always covered by
a continuous film of water however small the water
saturation may be. Reducing the water saturation results in
a lower average thickness of this film but the connectivity
of the water phase is essentially unchanged. Anderson
(1986) published a very detailed, two-part, survey of the
literature on wettability.

For a given rock sample these two properties — porosity
entirely connected and water-wet pore surface — imply
that the conductivity remains positive for any non-zero
value of the water volume fraction however small S may
be. Therefore, in that case y, must be negative or equal
to 0 in equation (6). The value X, = 0 leads to Archie’s
equation that applies well to most “clean” sandstone
reservoir rocks. Note that the term “clean” here refers to
clay-free rocks. The effect of clay will be discussed later
in the article.

So even though there is a link between the connectivity
equation and percolation physics, the WCI should not
be interpreted in general as a percolation threshold. y, or
§_ can be interpreted as such only for very specific cases
such as — for example — strongly oil-wet rocks provided
there is no other mechanism in the rock enhancing the
connectivity of the water phase. Other authors have made
similar comments. See for example Zhou et al. (1997),
and Kennedy (2007) who calls the WCI a “pseudo”-
percolation threshold (PPT).
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THE MODIFIED CRIM MIXING LAW

Mixing laws have been introduced in effective medium
theories to calculate a physical parameter of a mixture
as a function of the volume fractions of the components
of the mixture and the values of the parameter for each
component.

The Complex Refractive Index Measurement (CRIM)
mixing law was introduced by Birchak et al. (1974) to
model the complex conductivity of mixtures at high
frequency. See also Berryman (1995). Applied to the
complex conductivity of a rock made of a mixture of k

components with respective volume fractions x, ..., x,
CRIM takes the form

o’ =x0"+x,0)" +..+x.0,°, (10)
with X +x, +..+x, =1

This mixing law was shown to give excellent predictions
when compared to dielectric measurements on rocks —
Seleznev et al. (2004). However, its application range
goes all the way to zero frequency (DC). For example at
DC, consider a porous rock made of a mixture of (1) solid
grains, (2) water, and (3) oil.

x, =1-9,
x2 =SW¢’
o, =0, x=>0-5)¢

Applying equation (10) we get 0 =0, (Sw(p)2 which
is Archie’s equation in its simplest form (equation (1)).
The treatment above is a naive application of the CRIM
mixing law which includes the assumption that water
has the same connectivity throughout the rock and at
all scales. The requirement for a good model to include
Archie’s law as a limiting case leads naturally to consider
a modified version of the CRIM mixing law where the
exponent 1/2 is replaced by 1/u for a certain value of u:

o, =0
Then L
o,=0,,

o' =xo0" +..+x,0". (11)
A much more general form that could be considered is

fl@)=xf(o)+...+x.f (o), (12)

for some continuous function, f (¢). This equation is
entirely symmetrical; i.e., all components are treated on
an equal footing — a property that is highly desirable when
modeling random mixtures. To make physical sense it
should be possible to change units for conductivity and
equation (12) should still be valid. In other words for any
constant ¢ one must have

f(co)=xf(co)+...+x, f(co,). (13)
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Functions satisfying equation (13) for all ¢ are called
‘homogeneous’ or ‘scale independent’. We have proved
— Montaron (2008) — that all mathematical solutions
of this functional equation lead to equation (11); i.e.,
to satisfy equation (13) for all ¢ the function f must be
of the form f (¢) = o " for some real number u. This
result gives equation (11) a very special status in the
world of mixing laws because it is the only mixing
law that is both symmetrical in its variables and
homogeneous. Note that this includes the limiting case
u — o, which corresponds to the geometrical mean:
1Vu

. Vu ) _ X X
hm(xlO'l +...+Xk0'k ) =0, ..0,".

H—>0

The mixing law based on the geometrical mean is
obtained with the function f(¢) =1n (¢) and is also called
the Lichtenecker mixing law. The mixing law in equation
(11) was first introduced by Lichtenecker and Rother
(1931) to calculate the complex permittivity of mixtures.

APPLICATION TO SHALY SANDS

Now apply equation (11) for the modeling of shaly
sands. I use the experimental data published by Clavier
et al. (1984) in their paper on the Dual Water model.
Clavier’s paper refers to the original work of Waxman
and Smits (1968) and Waxman and Thomas (1974).
Shown in Figure 5 is a thin section of a typical example
of shaly sand. A schematic representation of the shaly

Fig.5 SEM picture of a cretaceous sandstone in Texas.
Abundant pore lining authigenic chlorite (a) and patchy
pore filling chlorite (c) clay are visible. The dark color
between quartz grains is epoxy.
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sand reservoir rock model used here is shown in Figure
6. The clay-bound-water has a much higher conductivity
compared to the ‘free’ brine contained in the pores.

Therefore, clay must be considered as a separate phase
in the model. To simplify only four phases are assumed
to be present in the medium. (In principle, different types
of clays, with different conductivities associated to each
type, might be distinguished.) Using Clavier et al. (1984)
notation the bulk volume fraction of clay water is S ¢
where ¢ is the total porosity, the conductivity of clay
water 1S o, the bulk volume fraction of ‘free’ water is
(S,-S.)p where S is the total water saturation, and o, is
the conductivity of ‘free’ water (brine).

The other two phases — solid quartz grains and oil — have
zero conductivity. Equation (11) thus takes the form

O-l//u = Scw¢o-cl’ivu + (Sw - Scw)goo-\lv/u > (14)

c=0,(S.0-x.)", (15)
1/ u
with 2. =—S. ¢ (&] ~1l. (16)
GW

Equation (15)is an approximation of equation (7b) with
the WCI provided by equation (16). Since the conductivity
of clay water is higher than the conductivity of brine,
X, takes negative values; therefore, the RI curve is
concave down. The corresponding Dual Water model is:

' <
O D@(
\

%
L
[ Jerain [ |clay [ |water [Joi

Fig. 6 This shaly sand model assumes that the medium
is a mixture of 4 phases: grains, clay, water and oil. The
conductivity of the clay bound water is different from the
conductivity of free water.
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S (o
14+ = —w _1|[.
s, \ o, (17

As per Clavier et al. (1984), the clay water saturation is
equal to the product of the counterion concentration
Q, and not by v, defined as the clay water volume
associated with 1 unit of clay counterions (meq). Clavier
et al. (1984) point out that in order to obtain correct
values for the conductivity the parameter O used in
their model is required to be 25 percent higher than the
true ‘“chemical” counterion concentration measured
in the lab. This “electrical” O, — as they call it — also
takes slightly different values for the Dual Water and
the Waxman-Smits models. Regardless of which case is
considered, it is a fitting parameter.

Using the data in Clavieretal. n=1.77, m=1.85, 9 =20
percent, ¢ = 10 mho/m, ¢, = 30 mho/m at 100°C, the fit
shown in Figure 7 is obtained by adjusting the conductivity
exponent to 4 =1.81 and the counterion concentration by
+5.5 percent compared to the Dual Water model. With
these values the water connectivity index is equal to y,
= —0.0176 and the critical saturation S, 1s —0.088. The
maximum relative error between the two curves is + 3.4
percent.

It is shown here how the modified CRIM mixing law
(11) can be used to combine four different phases to
model the conductivity of a shaly sand reservoir rock.
The application of the mixing law leads directly to
the connectivity equation and provides an analytical
expression (16) of the WCI as a function of formation
properties. The agreement between this model and
Waxman-Smits and Dual-Water models is remarkable.

100.00 T T T 111

— Dual Water

_ n_.m
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Sew=10% o /c, =3 ¢=20% \\

DW: n=1.77 m=1.85 \\
CE: =181 /S, =1.055
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0.10 Water Saturation Sw 1.00

Fig.7 Comparison between the Dual Water model for
shaly sands and the connectivity equation. The fit is done
by adjusting counterion concentration (+5.5 percent).
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However, all three models use values of the counterion
concentration that are not equal to measured chemical
counterion concentrations. This is an indication that these
models are incomplete. It is however, possible to develop
a more sophisticated connectivity model that allows use
of the true counterion concentration.

OIL-WET CARBONATE ROCKS

A detailed approach for modeling oil-wet rocks is
described in Montaron (2007). Start by considering the
model shown in Figure 8. The space can be divided up
in ‘oil-wet cells’ and ‘water-wet cells’. Oil-wet cells have
100 percent of the solid surface covered by oil. Water-
wet cells have 100 percent of the solid surface covered
by water. Presented here is a different way to partition
the pore space, as compared to Montaron (2007).

The oil-wet cells are shown in Figure 8 with red
boundaries. They are entirely contained in the porosity.
The cells are polyedra constructed with respect to the
center of gravity of surrounding grains. The water-wet
cells are the rest of the porosity with black boundaries.

The pore volume fraction of oil-wet cells is x and the
pore volume fraction of water-wet cells is 1 — x .
According to their definition, water-wet cells and
oil-wet cells have porosity 1 but they may have
different average fluid saturations. Such a “clean”
medium made only of water-wet cells — shown in
Figure 9 — follows the connectivity equation with a
WCI equal to zero; i.e., it follows Archie’s equation.

A medium made only of oil-wet cells (Figure 9) cannot
conduct electricity unless the amount of water in the
system is sufficient for isolated water blobs to become
connected. This medium has a clear percolation behavior
with a percolation threshold for the water volume fraction

Grains

Pore Surface Covered by:

— \\/ater e Q]

Fig.8 A simple model for oil-wet porous rocks. The
volume is considered a mixture of “water-wet cells”
(black boundaries) and “oil-wet cells”(red boundaries).
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equal to

X = Xwo = Seo®- (18)

X, 18 the maximum possible value for the WCI and
S, 1s the maximum possible value for the critical
saturation. S must be higher than S for the medium to
be conductive. From initial results presented in Montaron
(2007) it seems that S  is of the order of 60 percent to 70
percent.

Oil-wet natural rocks, even strongly oil-wet rocks,
are far from having 100 percent of their pore surface
covered by oil. In most cases the surface fraction covered
by oil is actually very small — typically a few percent.
The reason is that micro pores are generally fully
water saturated and water-wet. Only macro pores and a
fraction of the meso pores can be oil-wet. However, the
vast majority of the pore surface area is in micro pores,
while the majority of the pore volume is in macro and
meso pores. This is a direct consequence of the pore size
distribution. The medium described above is a mixture of
three phases (solid grains, oil-wet cells (ow), water-wet
cells (ww)) with the following parameters:

O-ol:O’ xol:1_¢7
oo, (S-S, x,=x0,
c,, =0, x,,=1=x)p.

The total water saturation is equal to

S, =x8"+1-x)S"".

Applying equation (11) to the conductivities and
volume fractions of the three phases leads to the
connectivity equation with a WCI equal to

w = xoSCO(D'

/ %7

\\0
810\

xw=0

(19)

ZW:ZW0>O

Fig.9 The water-wet medium follows Archie’s law;
Le., x,= 0. A 100 percent oil-wet medium exhibits

a large positive percolation threshold y . In these
media porosity is 1, only pore boundaries are present.
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This result is consistent with Montaron (2007) with a
different space partitioning method. It can be shown that
x remains identical in both methods.

According to equation (19) a medium with 20 percent
porosity and an oil-wet bulk volume fraction of 60 percent
as defined in Figure 8 would have a WCI of the order
of +0.07 and a critical saturation S, equal to 36 percent.
Such a large positive value of the WCI would create a
pronounced concave up curvature for the RI curve. That
type of extreme behavior can be created artificially on

carbonate cores.

A famous data set from Sweeney and Jennings (1960) is
shown in Figure 10 in comparison to the connectivity
equation. The RI curves shown are based on equation (8)
with various values of the critical saturation S. The black
straight line corresponds to Archie’s equation (S, = 0)
and fits well the water-wet data points. The dotted and
solid black curves correspond to positive values of S,
up to 0.5. Sweeney and Jennings used rocks from the
same carbonate formation for these experiments. The
black dots were obtained on a rock rendered completely
water-wet using a chemical treatment. The blue and red
dots correspond to the same rock type made strongly oil-
wet. The blue and red dots match nicely the connectivity

1000 0.1 . 0.2 .0.3 IO.J‘.O.S ‘6 ‘Sc‘ ‘
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' 'p . . [ T [ 1
.' s /.[:16
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| ®
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(Sc=0) o AN
) 3
t 4
u=16
| | s 4

0.1 Water Saturation 1

Fig. 10 Data from Sweeney and Jennings (1960)
compared to the connectivity equation. The same
exponent x4 = 1.6 can be used to model a rock made either
water-wet or strongly oil-wet.
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equation with S close to 0.25 (blue dots) and 0.5 (red
dots). It is remarkable here that in all cases the same
conductivity exponent ¢ = 1.6 is used. Modeling the
black dots with Archie’s equation requires 7 = 1.6 for the
black dots, n = 8.6 for the red dots, and n = 4.8 for the
blue dots with a poor match in this last case due to the
curvature that cannot be represented by Archie’s equation.

Archie Exponents Revisited

One way the saturation exponent # can be related to the
parameters of the connectivity equation is by equating
equation (8)tothe RIderived from Archie’s (equation (2)):

In(S, - ,)~In(1-S,)
n= .
H ns, (202)

Using the example shown in Figure 10 for § = 0.25
equation (20a) givesn=2.13at§ =landn=5at§ =0.26
just above the critical saturation. Another method is to use
the logarithm derivative

he dIn(RI) S,
dins, s -s (20b)

Equation (20b) gives the local slope n at the point (R/,
S ). Equation (20a) gives the slope of the line joining
the point (1,1) to the point (R/, S ). Note that for both
expressions the limit value of n at § = 1 is u /(1-S).
For small values of |S| equation (20b) with § = =05
gives a good approximation of the best matchmg n for
Archie’s law. Similarly one can find the expression for m
(Montaron, 2007):

In1-8)—-In(l/@p-S
— n(1-S)-In1/9-S,) 21
Ing

For example assuming 30 percent porosity, x4 = 1.6 and
S = 0.25, then m = 1.88. The high stability of the
conductivity exponent and the fact that it does not depend
on S makes the connectivity equation model simpler to
use than Archie’s equation.

MIXED-WET MICRITIC CARBONATES

The simple model presented above for oil-wetrocks leads
systematically to a concave up curvature for the
RI curve. The connectivity of water is always
reduced by the presence of oil-wet surfaces that
create ‘“‘cuts” in the continuity of the water film.

However, some mixed-wet carbonate rocks do not have
RI plots with concave up curvature. In fact some mixed-
wet carbonate rocks nicely follow Archie’s law (no
curvature) and some can even present a concave down
curvature, similar to shaly sandstones! The explanation
of this apparent paradox requires a detailed analysis
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of the pore structure of carbonate rocks and of the
connectivity of water in these systems. Swanson (1985)
was one of the first to underline the influence of micro-
porosity on the conductivity of rocks. Petricola et al.
(2002) have proposed a mixing model for micritic
carbonate rocks based on a partition of the pore size
distribution in 3 groups: micro, meso and macro pores.

This type of partitioning has been widely adopted by the
industry for carbonate petrophysical modeling.
Considered here is a model for micritic carbonates based
on this partition. Sen et al. (1981) have shown that the
conductivity exponent for sphere packings is equal to 1.5.
This is also the value known for micrite crystal packings
found in micritic carbonate rocks as shown in Figure 11.
The size of these crystals is limited to a few microns. The
sub-micron pores are so small that very high capillary
pressure is required for oil to penetrate them, so high
in fact that micritic grains generally remain fully water
saturated and perfectly water-wet, at least in formation
layers located not too far above the oil-water contact. The
low value of the conductivity exponent for micritic grains
is due to the high connectivity of the water films in these
micro-pores.

Areasonable model for micro-pores is: x,_=bulk volume
fraction of micritic grains; ¢ = porosity inside micritic

- ok
=
3

Fig. 11 Thin section of a micritic limestone from the
Thamama formation (Abu-Dhabi). The oil patches were
added to the picture. Grains are made of tight packings of
fully water saturated micrite crystals.
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grains; u = 1.5 (conductivity exponent of micritic grains);
S, = 1 (fully water saturated); and y, = 0 (Archie’s
equation). The conductivity of micritic grains is
c,=0,0,.

The oil is contained in meso and macro pores; i.e., pores
other than pores located in micritic grains. With this
simplified model the meso-macro porosity ¢, must be
equal to or lower than 1 — x . The remaining volume
fraction 1 — x — ¢, corresponds to solid grains (e.g.,
dolomite crystals or large calcite crystals) that may be
present. The total porosity isp =x ¢ +¢,,.

Meso-macro pores have water-wet and oil-wet surfaces.
The same definitions as in Figure 8 and Figure 9 are used
to define the meso-macro pore volume fraction x, of oil-
wet cells. Finally, this model is a mixture of four phases
(1) micritic grains, (2) oil-wet cells, (3) water-wet cells,
and (4) solid grains, i.e., grains with no micro-porosity.
Its parameters are

X =X,,

Xy = XoPus

X =(1=x,)p,,

X, =l=x, =@y,
where the approximation given by equation (7b) is used
for the conductivity, o,, of oil-wet cells. Also assume that
the exponent # in the mixing law given by equation (11)
is the exponent of the meso-macro pore network. Water

saturations in oil-wet and water-wet cells are S * and
S . The total water volume fraction is equal to

o, =0,0,",
0-2 ~ O-W(Sv(\)/w - cO)ﬂ7
03 :GW(S:;VW)”’

c,=0,

S.o=x0,5"+(1-x)p,S" +x,0,.

Using the expression for S ¢ above inequation (11) leads
to the connectivity (equation (7b)) with

um/m

Zw ~ xm (¢m _¢m )+xoSCO¢M‘ (22)

Equation (22) can be used in equation (7a) to get the final
expression for the conductivity of the medium.

Numerical Example

With ¢ =0.15, and the bulk volume fraction of micritic
grains x = 0.70, the total micro-porosity isx ¢, = 0.105.
Assuming a total porosity of the rock sample ¢ = 0.25,
the meso-macro porosity is ¢, = 0.145 and the volume
fraction for solid grains is 0.155. Using £ = 1.905, 4, = 1.5,
S,=0.6,and x = 0.60, then y, = 0.0; i.e., despite the fact
that 60 percent of the meso-macro pore volume is oil-wet,
the presence of a large amount of micrite compensates
exactly the effect of oil-wetness and Archie’s equation
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applies beautifully. Of course the value 4 = 1.905 was
chosen here on purpose to get x, = 0 in order to make the
point.

Using R, =0.05 ohm-mand the numerical data above, the
resistivity of this formation is R = 1.98 ohm-m. The water
contained in the micro-pores is non-movable, and the oil
saturation in the meso-macro pore volume is 70 percent
and even higher in macro pores. This is a typical example
of low resistivity pay (LRP) carbonate formation such as
described by Petricola (2002).

Discussion: Archie or Not Archie?

The model presented above for mixed-wet micritic
carbonates is a simple model. For example, it does
not account for vugs that may be present in sufficient
quantities to change significantly the petrophysical model.
Vugs could have been accounted for by adding another
term in the WCI resulting from the addition of a “vug
component” in the mixing model.

However, equation (22) is a quantitative model that
greatly helps understand water connectivity effects in
these rocks. The presence of oil-wet surfaces in meso-
macro pores reduces the connectivity of water and the
corresponding WCI term is equal to +0.052 in equation
(22). Such a large WCI should generate a very pronounced
concave up curvature if grains had no micro-porosity. But
the presence of micro-porosity inmicritic grains and the fact
that the conductivity exponent of micrite crystal packings is
only u = 1.5 generates a WCI term that is negative. In the
numerical example chosen above the two terms compensate
exactly and Archie’s equation ‘works’ with n =m =1.905!
With different numbers all possible curves shown in Figure
4 can be obtained: Concave up or down and straight lines.

The conductivity of micritic carbonates can behave like
shaly sandstones. They can also behave like strongly
oil-wet carbonates if, for example, the micrite volume
fraction is not sufficient to compensate the effect of oil-
wetness. And they can also follow Archie’s equation in
all situations where y is close to 0; e.g., in the range
—0.005 <y, <+0.005.

The fact that Archie exponents # and m, as well as the
conductivity exponent u, are generally close to 2 is
correlated with the CRIM mixing law exponent (1/2) .
This also has to do with the critical conductivity exponent
for 3D site percolation — equal to 2 — and the Kirkpatrick
EMT model — a polynomial of degree 2!

Application to a Middle East Carbonate Reservoir

When SCAL datais unavailable, or unconvincing, a good
start is to apply equation (6) or equation (7) with ¢ = 1.9
to 2.0, and to use log data to determine the WCI. This
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procedure was used on a data set from a Middle East
carbonate reservoir.

The water saturation, the porosity and the resistivity of
the formation must be known in order to calculate y from
equation (6). Unfortunately, the methods available to
estimate water saturation independently of deep resistivity
rely oninstrumentresponses influenced by drilling-induced
changes in formation properties. The deepest response is
from the neutron capture sigma tool with about a 6-inch
depth of investigation. At “wireline time” the near-
wellbore formation logged has probably been completely
invaded with mud filtrate. Jia, Buckley and Morrow (1994)
concluded that surface-active components used in water
based muds adsorb on clays and are removed from the
filtrate by formation of the mud cake. Changes in wettability
due to mud filtrate invasion are therefore, expected to be
minor in carbonate rocks drilled with water based muds.
On the other hand, wettability alteration would be severe
for oil-based muds due to oil-wetting surfactants used in
these fluids. Fortunately, most carbonate rocks, at least
in the Middle East, are drilled with water based muds.

The water saturation was provided by an EPT tool. This
high frequency tool measures the dielectric constant of the
formation that is a direct function of the water saturation.
This very shallow measurement was combined with the
resistivity provided by an R | tool.

The WCI was calculated using the equation

lw ~ Sxow_ (Rmf /Rxo)l/#i (23)
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Fig. 12 Normalized Amott-Harvey wettability index
measurement on 5 cores compared to the WCI derived
from wireline logs in a Middle East carbonate reservoir.
A good correlation is observed.
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where R is the resistivity of the mud filtrate, known
accurately, and where u = 2.

The x, and S logs are shown in Figure 13. In order to
highlight oil-wet zones the intervals with negative WCI
or §_are truncated. Only positive spikes are shown. The
depth is increasing from left to right. The light blue curves
are the 100ft sliding averages for each parameter, and
show a normal trend, with high values towards the top of
the reservoir and low values at the bottom of the reservoir
showing a water-wet zone close to the oil-water contact.

The logs show a layered reservoir structure with strongly
positive WCI zones alternating with mixed-wet zones
and some layers that appear to be water-wet with y,close
to zero at the top of the zone, in the middle and at the
bottom. A complete suite of logs was run in this well and
an ELAN interpretation made.

Figure 14 shows the agreement between the ELAN
and the S logs. Tar zones were identified in ELAN
by assessing non-movable hydrocarbons using NMR
measurements independent of the ones used for the
determination of y and S .

Tar zones are known to be strongly oil-wet. The tar mat
at x100 ft identified with ELAN correlates perfectly
with the WCI positive spike shown by the S log. The
tight limestone bed at x800 ft contains only water and
correlates with a water-wet marker on the S and y, logs.

All the apparently water-wet zones at the bottom of the
reservoir are indeed confirmed to contain mostly water
by ELAN. The apparently water-wet layers at the top
of the reservoir actually have negative values of y ;
approximately —0.01. This requires an explanation.

A comparison of the S log with an ECS log (nuclear
spectroscopy tool for mineralogy identification) is shown
in Figure 14. All the layers with slightly negative y, agree
perfectly with anhydrite layers. This is easy to understand
from equation (23). The porosity of anhydrite is zero. R ,
was approximately 0.025 ohm-m. Although the resistivity
of anhydrite is expected to be extremely high —i.e. mega-
ohm-m—R_ being a very shallow measurement measured
only 250 ohm-m due to the influence of the salty mud in
the borehole. We should have found y, = 0 in front of each
anhydrite layer, but instead we found the value provided
by equation (23); i.e., —(0.025/250)* =—0.01. This shows
that a zero value for ¥ _or S can also correspond to a very
tight zone with zero porosity. In practice this could be
taken care of by applying a cut-off to ignore anhydrite
layers.

Figure 14 shows all the other tar layers identified with
ELAN. They all match positive WCI and S, spikes. Five
cores from this well were tested for wettability in the lab
using the Amott-Harvey method (see Anderson, 1986, his
second citation). A good linear correlation was obtained
between y and the normalized Amott-Harvey index
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Measurements: Sxo from EPT, Rxo, Phi_T (Rhob + ECS) Rmf=0.024 ohm-m p =2
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using ¢ = 1.9 (Figure 12). This correlation is well in line
with the model (19), or the more elaborate model (22),
expressing the WCI as a linear function of the oil-wet
volume fraction in the rock.

CONCLUSION

The connectivity equation provides a nice and practical
alternative to Archie’s equation. It is a simple equation:
Like Archie’s equation it has only two petrophysical
parameters — the conductivity exponent and the water
connectivity index. It reduces to Archie’s equation in the
limit y — 0, and it allows the modeling of non-Archie
rocks such as strongly oil-wet rocks and shaly sands. 1
have shown that the connectivity equation is consistent
with the modified CRIM mixing law.

The connectivity equation and the modified CRIM
mixing law are the two main analytical tools used in the
theory of connectivity. A porous formation is described
as a mixture of various solid and fluid phases, each
phase being characterized by its volume fraction in the
medium and its electrical conductivity. This approach
accounts for variations of water connectivity among the
different phases. The method was successfully aplied to
develop analytical models for the conductivity equation
of rock types as different as shaly sands, oil-wet rocks,
and mixed-wet micritic carbonates. All these rocks
were shown to follow the connectivity equation. The
conductivity exponent in this model seems much more
stable than Archie exponents n and m. The variability
in the connectivity theory is transferred to the water
connectivity index (WCI). However, this parameter can
be expressed analytically as a function of rock properties
such as wettability, clay content or the pore structure of
rocks.
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