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3.1 Introduction to rifts, failed rifts, and passive continental margin
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3.2 Geological and geophysical observations in regions of continental extension

3.2.1 Rifts

& Heat flow: Rift zones, in

general, have heat flows

of 90-110 mWm-=2. This is Western Rift shoulder | Eastern Rift, Kenya (East Africa)
a factor of 2 higher than in East of Rift

surrounding unstretched Clobel heatflow average
terranes. Rio Grande Rift, New Mexico, USA

Great Plains | Rio Grande Rift

Rhine Graben (Western Europe)

| Hercynian foldbelt |

Upper Rhine Graben

Baikal Rift (Siberia)

Caledonian
Foldbelt
I [] Baikal Rift
Siberian
Platform
I T T : I | I T
40 60 80 100 120 140

Heat flow mW m™2

ereprea vy o anaren 116 - 3-2 Heat flows in some continental rifts and surrounding regions, compared to the global heat flowg
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@ Seismicity: Rift zones are characterized by high levels of earthquake activity.
Earthquakes typically have moment magnitudes of up to 5.0 (Rhine Graben) or
6.0 (East African Rift), with shallow focal depths of < 30 km, indicating that the
earthquakes are located in the brittle mid-upper crust.

@ Crustal thickness: Moho is elevated beneath rift zones. Some regions of
extensive, diffusive extension such as the Basin and Range, SW USA, are
located on previously thickened crust. Another example is the Tibetan Plateau,
which is undergoing active extension and overlies crust as much as 70 km thick.
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Fig. 3.4 Crustal thickness changes in the North Sea area as a result of Mesozoic rifting (after
Klemperer 1988). (a) Unmigrated line drawing in two-way travel time of NSDP line 1 from the Shetland
Spur to the Norwegian coast (location in (c)); (b) Depth-migrated version showing the depth of the
reflection Moho; (c) Contour map of the interpreted thickness of the prerifting basement (pre-Triassic)

'"owing that the Viking Graben has been stretched by a factor of 2 compared to the Shetland Platform.
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West East

Classical example:
Viking Graben
In the North Sea

Two-way time (s)

* Triassic and Jurassic sedimentary strata
have been rotated between subparallel high-
angle listric faults.

» The faults can be traced deep into the crust ;

and are not bounded by a detachment O i
1] -

surface.

_ Cretaceous

At the time when these faults formed they
reached a depth at which the crust was hot
enough to deform by ductile flow, causing

sub-horizontal reflections in the lower crust.

Two-way time (s)

Moho —'

Klemperer & Peddy (1992) in Understanding the Earth: A New Synthesis|
Brown, Hawkesworth & Wilson (eds), p.265

15 s :
Unmigrated data L 10 km

Prepared by Dr. Andrew T. Lin Figure 13.10 GECO profile across the northern North dipping normal faults (domino-style faulting) in the upper

, unin r interpr , showin; epl crust.
Institute of Geophysics Sea, uninterpreted and interpreted data, sl g steeply

National Central Univ. Taiwan



@ Gravity: Rift zones typically have a long wavelength Bouguer gravity low
with sometimes a secondary high located in the center of the rift zone. The
conventional explanation is that rift zones have anomalously hot material in the
mantle beneath the rift, producing a mass deficit and therefore a negative

gravity anomaly. The subsidiary gravity high is thought to be due to the intrusion
of dense magma bodies within the continental crust.

@® Faults: normal dip-slip faults predominates with a variable number of strike-
slip faults depending on the orientation of the rift axis in relation to the bulk
extension direction. Most major border faults dip steeply inwards towards the
basin center and are planar as far as they ca be imaged. However, some rift
bounding faults are low-angle and listric, taking up very large amounts of
horizontal extension, such as in the supradetachment basins of SW USA.

Metamorphic rocks may be unroofed from < 25 km depth in these “core
complexes”.
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Fig. 3.5 Gravity profiles across rift zones. (a) Gravity profiles and density model across the Gregory Rift,
Kenya. The secondary gravity high is modeled as due to the intrusion of dense magma bodies beneath the

rift valley (after Baker and Wohlenberg 1971); (b) Gravity profile and density model for a profile across
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@& Topography: Active rift zones typically have elevated rift flank topography
bordering a depositional basin.

Two scales of uplift;

(a) Long length scale (several 100s km: Like the > 3 km-high topographic swells
of the Ethiopia and East Africa.

(b) Smaller length scale (< 100 km): linear rift flank uplifts associated with border
fault arrays. Like the < 1 km-high highlands bordering the Gulf of Suez; southern
Rhine Graben, where tectonically driven exhumation of the rift flank has resulted
iIn 2-3 km of erosion. Regions of extensive, diffusive extension are associated
with plateau-type topography, such as the Basin and Range, USA (rifting due to
shallow subduction of hot oceanic lithosphere) and especially Tibet (rifting due
to thickening of continental lithosphere).
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Fig. 3.6 (&) The major domal uplifts of Africa (Afar and East African domes) are due to uplift over hotspots

in the mantle. Also shown are the smaller topographic uplifts of central Africa, and the main rift system:
AG, Abu Gabra Rift; MR, Malawi Rift; ER and WR, Eastern and Western Rifts; NR, Ngaoundere Rift.
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natonal cenial niv. U [f OF Suez. After Edinger et al.(1989).
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Time scale and amount of extension

Two families of basins, with different strain rate, total extensional strain (or

1.
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stretch factor ), and the dip of master faults:

Narrow rifts: Discrete continental rifts located on normal thickness crust
(such as the Rhine Graben, Baikal Rift, Rio Grande Rift) extend slowly (<1
mm yr-1) over long periods of time (10 to > 30 Myr), with low total extensional
strain (generally < 10 km). Master fault angles are steep (45-70"). Seismicity
suggests that crustal extension takes place down to mid-crustal levels. At
higher strain rates, narrow rifts may evolve through increased stretching into
passive margins.

Wide rifts: Supradetachment basins occur within wide extended domains
with thickened crust. They typically extend quickly (<20 mm yr-1) over short
periods of time (5-12 Myr) with a high amount of total extensional strain (10-
80 km). Master faults (detachments) are shallow in dip (10-30°), but may have
originated at higher angles. Local anomalies in the ductile lower crust are
amplified to produced core complexes.
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3.2.2 Passive continental margins

. East Coast 4
b : el A

Rifted margin

. basins
Continental breakup
related LIPs

. Namibia

Australia
R e Brazil/lUruguay

h Q-9 Argentina

Skogseid (2001), Marine Petroleum Geology, 18.

Passive margin: A continental margin which is not also a plate margin. Such margins
are also known as “aseismic margins” or “Atlantic-type margins” and are contrasted

with active margins.

Table. 3.1 Conjugate margins of the Atlantic

Western margin Eastern margin  Start of main rifting and duration
Southern Grand Banks Iberia/Galicia Valanginian (137 Ma) 15-25 Myr
Flemish Cap Goban Spur Barremian (127 Ma) 15-20Myr

et Labrador SW Greenland Barremian (127 Ma) 40-65 Myr
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National Central Univ. Taiwan
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Fig. 3.8 Volcanic, sediment-nourished, and sediment-starved margins (after White and McKenzie 1989). (a)
Location of margins in the central-north Atlantic region on a Middle Jurassic reconstruction (170Ma), shortly
after the onset of seafloor spreading; (b) Biscay margin, which is sediment starved; (c) Baltimore Canyon
Trough margin, which is thickly sedimented; (d) Hatton Bank margin, which is characterized by important
repured by e AntfIMALiC ACtivity. Shaded area shows extent of extrusive basalts. Moho is overdeepened due to presér?te
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Fig. 28.8 Map of the eastern United States passive passive-margin sedimentary environments, all juxtaposed
continental margin and adjacent coastal plain and ocean over a zonal transect of some 20" of latitude. (From
floor. This is really a locus typicus for the full spectrum of Sheridan & Grow, 1988.)
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A cross-section of the NE Atlantic margin of the USA
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Figure 1. Schematic cross-section from the New Jersey Coastal Plain crossing the continental shelf, slope, and rise in the vicinity of Leg 174A (after Grow and

Sheridan, 1988). The wedge labeled Syn rift clastics and volcanics’i s now known to be composed primarily of volecanic rocks (Sheridan et al., 1993).
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Conjugate margins: Original matching margins on
either side of the ocean (Nova Scotia vs. Morocco)

Source: Molnar et al. (2002) Correlation of syn-rift structural elements across
the central Atlantic between Morocco and Nova Scotia, AAPG Lecture Series.
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Fig. 3.9 Conjugate margins based
on deep seismic information (after
Lister et al.1986; Louden and Chian
1999). (a) Symmetric margin (pure
shear), and (b) asymmetric (simple
shear) with a lithospheric
detachment fault. COB is ocean-
continent boundary.
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Regional seismic transects
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Molnar et al. (2002)
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Molnar et al. (2002)
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Crustal transect across the northern Namibian margin
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Skogseid (2001), Marine Petroleum Geology, 18.
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Passive margin stratigraphy

Post-rift strata

Passive margins are
characterized by rifted and
rotated blocks of usually
thick sedimentary

Post-rift unconformity
(PRU)

Syn-rift strata

Syn-rift unconformity
SRU

Pre-rift strata

Figure A2.2 Terminology of rift-basin stratigraphy used in this

SHaREL sequences.
The stratigraphy of a passive margin consists of pre-rift,
syn-rift, and post-rift successions. The pre-rift and syn-rift
strata are separated by the syn-rift unconformity whereas
the syn- and post-rift strata are divided by the post-rift (or

break-up) unconformity.

From: Bosence (1998) in: Sedimentation and Tectonics in Rift Basins.

Rurser & Bosence (eds), p. 11. 27



Pre-rift sections

* The pre-rift section is totally unrelated to th.'e subsequent
rift phase and can be of any lithology.

The pre-rift section is faulted during rifting and theoretically
has a better chance of preservation when the rift basin was
Initiated as a sag rather than as an arch.

* The top of the pre-rift section is usually marked by an
angular unconformity (syn-rift unconformity) that marks the

onset of rifting and is visible on seismic sections.

28
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Post-rift unconfarmity
(PRU)
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/ Pre-rift strata
Figure A22 1 alogy of rifl-basin stratigraphy used in i}

 The most common sediments that accumulate during

rifting are proximal coarse clastics, including
conglomerates and red beds shed from rising fault blocks,

and distal finer grained clastics, including lacustrine

lithologies, all in a continental setting.

» Several rifted basins have source and reservoir rocks
entirely of continental origin with no marine rocks present.

Examples include rifted basins in China, Brazil and Sudan.
29



“Frozen” Triassic-Jurassic rift basins around eastern USA
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Bond et al. (1995) in: Tectonics of Sedimentary Basins, Busby & Ingersoll (eds.), p.169.
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Fig. 4.22 Sealed cross sections
of the ritt basins of eastern
North America, showing the tri-
partite stratigraphy of fluvial/
lacustrine/fluvial successions.
Also shown are basalt flows, and
diabase dikes and sills (from
Schlische, 1992).
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Post-rift sections

_; + Syn-rift strata

Pre-rift strata

@ The lower part of the post rift section is characterized by gently dipping
reflections that represent the final establishment of a marine transgression.
@ The later post rift sequence is often marked by cycles of sigmoidal shape,
which progradation of sediments in a seaward direction.

@ A thick accumulation of salt, continuous evaporation of normal sea water,
which was periodically replenished, is a normal consequence of continental
breakup and seafloor spreading at low latitudes.

@ Postrift phase (or drift phase) is typically dominated by gravity-controlled

deformation (salt tectonics, mud diapirism, slumps, slides, listric growth faults).
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Melting is common during rifting
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Leeder (1995) in: Tectonics of Sedimentary Basins, Busby & Ingersoll (eds.), p.123.
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Figure 3.4 Rifting and melt-
ing. A, Horizontally averaged
thermal structure of lithosphere
for potential temperature (Tp:
the temperature on adiabatic
gradient projected to surface
pressure) of 1280°C, mechani-
cal-boundary-layer (lithosphere)
thickness of 100 km, and inte-
rior viscosity of 2.107" m?s™!
(after McKenzie and Bickle,
1988). B. Sketch graphs (after
Latin et al., 1990) to summarize
three possible mechanisms for
producing melts during rifting
from results of Fig. 3.4A. In B1,
solidus migrates to left because
volatiles like water are added to
the system, as in island-arc envi-
ronments. In B2, potential tem-
perature is raised, causing geo-
-therm to migrate to right, due to
rising hot spot or plume (open-
system melting). In B3, the
lithosphere is thinned mechani-
cally by closed-system stretch-
ing, with asthenosphere rising
to be partially melted due to
adiabatic decompression.
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VOLCANIC MARGIN Volcanic vs.
le=50~150km—sfe—— 50— 300+ km —— non-volcanic
margins

Mutter et al. (1988) JGR,93

Fig. 7. Comparison of the typical structural
elements of "volcanic" and "nonvolcanic"
margins. The numbers refer to structures
described in the text and are 1, the normal
thickness oceanic crust; 2, the thick volcanic
succession associated with the continent-ocean
boundary of volcanic margins of which the
seaward dipping units form the. upper sequence;

S st .
= 3, a structural high in continental crust that
often occurs adjacent to the thick volcanic
succession; 4, thinned, subsided continental
crust; 5, unstretched continental crust. The
_@_ dot-dash line marks the stratigraphic level of
_\\._/I breakup. Parallel ruled regions indicate
Other symbols are as for Figures 3

sediments.
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An idealized volcanic margin
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Fig. 4. Schematic cross-section of a generic volcanic rifted margin in the South Atlantic. Crustal units and dimensions are based on North Atlan-
tic volcanic margins and on the Namibian margin (Gerrard & Smith, 1982; Gladczenko et al., 1997). Refraction data are sparse, so the P-wave
velocities shown (4.0-8.0 km/s) are speculative. Salt-tectonics effects have been omitted for clarity. BUU, breakup unconformity; COB, the conti-
nental-oceanic boundary, varies in position from modern continental rise to shelf. Vertical exaggeration is roughly 4:1.
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Prevared by Dr. Andrew T. Lin Figure 1. Magnetic anomaly map of the northeast Atlantic, showing main structural and magmatic features, selected drill sites penetrating breakup volcanics,
Insﬁme ofy Geo‘physics ’ and location of seismic profiles. Shown are DSDP Sites 552-554 (Roberts, Schnitker, et al., 1984), ODP Site 642 (Eldholm, Thiede, Taylor, et al., 1987), and
Transects EG63 and EG66 (Larsen, Saunders, Clift, et al., 1994; Duncan, Larsen, Allan, et al., 1996). EB = Edoras Bank, HB = Hatton Bank Margin, JM = Jan
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Mayen Ridge, MM = M re Margin, VB = V r ing Basin. Magnetic data from Verhoef et al. (1996).
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Prepared by Dr. Andrew T. Lin B. DSDP Sites 55255 4 on the Edoras Bank Margin, modified from Roberts, Schnitker, et al. (1984). EE = top-basement, K = base-SDR.
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East Greenland margin (EG63)
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Figure 4. Interpreted and depth-converted MCS reflection profile along the EG63 transect. Ball-and-line symbols = Legs 152 and 163 sites. Based on Duncan, Larsen, Allan, et al. (1996).
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How SDR being formed?
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Figure 15. Schematic reconstructions of the southern northeast Atlantic at
approximately 63N during the Paleogene, showing the development of the

rifted margin and the contemporaneous magmatism.
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Figure 6. The principle of seaward-dipping reflector sequence (SDRS) formation. The
interpretation builds on the model for crustal accretion in Iceland (Palmason, 1986). A.
Initiation of SDRS formation during breakup and formation of the featheredge of the
SDRS onlapping onto continental crust. In the case of the southeast Greenland COT,
the Continental Succession is to be considered part of the continental crust. When
spreading continues, a wide zone of SDRS crust forms. The model implies a down-dip,
narrow and fairly linear, subaerially exposed volcanic source that stayed above sea
level during the entire SDRS formation (Larsen and Jakobsdéttir, 1988). B. Kinematic
model of formation of SDRS-type crust. Loading stress highest in center. Flow lines in
dashed line and resultant stratigraphic structure in solid lines with age prog&&ion
shown in m.y. Sheeted dike complex at the bottom of the lava pile. Modified from
Palmason (1986).
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